• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Candida albicans: Progress in the understanding of the mechanisms of genetic diversification in a major fungal pathogen of humans

Bioengineer by Bioengineer
July 9, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Candida albicans is one of the most formidable fungal species, causing infection in humans. Investigating the structure and reproduction methods of pathogenic populations can help us to understand how they emerge and spread. A team of scientists therefore decided to sequence and analyze the genomes of 182 strains of C. albicans from around the world. They confirmed the clonal reproduction of this human pathogen but also showed that parasexual reproduction, previously only observed in a laboratory setting, contributes to the genetic diversity of C. albicans and therefore also to its ability to adapt to new environments and rid itself of deleterious mutations.

There are 5 million fungal species, but only a few hundred can cause disease in humans. Candida albicans is one of the most formidable of these species. It belongs to one of the four genera of pathogenic fungi responsible for high mortality rates in humans and is the second most common agent of opportunistic fungal infection in the world. Candida albicans is part of the human gut microbiota (a commensal fungus) but it also causes mucosal infections in healthy individuals and severe opportunistic infections in those with weakened immune defenses (immunocompromised individuals and patients who have received organ transplants, undergone serious surgery or suffered major trauma).

Understanding how pathogens emerge and spread involves analyzing the structure of their populations. Several studies have shown the importance of population genetics in shedding light on the emergence of new diseases, such as white-nose syndrome in bats in North America, which is caused by a fungus and is devastating entire bat populations. In this case, population genetics studies revealed that a fungus of European origin, which is harmless in European bat populations, invaded North America via clonal expansion.

Scientists in the Biology and Fungal Pathogenicity Unit at the Institut Pasteur and INRA, in collaboration with 12 other teams, sequenced and analyzed the genomes of 182 strains of C. albicans isolates, either commensal or responsible for superficial or invasive infections, from around the world. This is the largest population genomics study carried out on the pathogen to date. It confirms the primarily clonal reproduction of this human pathogen. But it also shows traces of introgression in the genome of some strains, indicating the possibility of genetic exchanges between strains in nature and reflecting parasexual reproduction, independent from meiosis, which had previously only been observed in a laboratory setting, or sexual reproduction, hitherto unknown for C. albicans. C. albicans' use of (para)sexual reproduction is no doubt crucial for it to generate genetic diversity and adapt to new environments quickly, as well as to rid itself of the deleterious mutations that build up during clonal reproduction and which, if they are not eliminated, would lead to the species' extinction.

###

More about Candidiasis

Fungi (yeast) of the Candida genus can cause superficial infections affecting the mucous membranes or skin, and invasive infections, either localized to one organ or generalized throughout the body. Of the 200 known species of Candida, around twenty are responsible for human infection. Candida yeasts are often responsible for severe, hospital-acquired infections.

Media Contact

Aurelie Perthuison
[email protected]

http://www.pasteur.fr

https://www.pasteur.fr/en/research-journal/news/progress-understanding-mechanisms-genetic-diversification-major-fungal-pathogen-humans-candida

Related Journal Article

http://dx.doi.org/10.1038/s41467-018-04787-4

Share12Tweet8Share2ShareShareShare2

Related Posts

Comparing Sex-Specific Brain Structures in Humans and Mice

Comparing Sex-Specific Brain Structures in Humans and Mice

October 12, 2025
blank

Both Xenopus laevis Sub-Genomes Undergo Similar Evolution

October 11, 2025

Male Traits Boost Sexual Jealousy and Gynephilia

October 11, 2025

Gestational Saccharin Disrupts Gut-Brain Glucose Control in Offspring

October 11, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1218 shares
    Share 486 Tweet 304
  • New Study Reveals the Science Behind Exercise and Weight Loss

    102 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    99 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    88 shares
    Share 35 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

PepMimic: Innovating Peptide Design via Interface Mimicry

Origin of Aquaculture Feed Ingredients Key to Sustainability

Blockchain-Based Distributed Storage for Motion Data

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.