• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Can we repair the brain? The promise of stem cell technologies for treating parkinson's disease

Bioengineer by Bioengineer
February 14, 2019
in Health
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Despite challenges, new advances in stem cell biology and genetic engineering show potential for better cell replacement therapies, say experts in a special supplement to the Journal of Parkinson’s Disease

IMAGE

Credit: Claire Henchcliffe


Amsterdam, NL, February 14, 2019 – Cell replacement may play an increasing role in alleviating the motor symptoms of Parkinson’s disease (PD) in future. Writing in a special supplement to the Journal of Parkinson’s Disease, experts describe how newly developed stem cell technologies could be used to treat the disease and discuss the great promise, as well as the significant challenges, of stem cell treatment.

The most common PD treatment today is based on enhancing the activity of the nigro-striatal pathway in the brain with dopamine-modulating therapies, thereby increasing striatal dopamine levels and improving motor impairment associated with the disease. However, this treatment has significant long-term limitations and side effects. Stem cell technologies show promise for treating PD and may play an increasing role in alleviating at least the motor symptoms, if not others, in the decades to come.

“We are in desperate need of a better way of helping people with PD. It is on the increase worldwide. There is still no cure, and medications only go part way to fully treat incoordination and movement problems,” explained co-authors Claire Henchcliffe, MD, DPhil, from the Department of Neurology, Weill Cornell Medical College, and Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; and Malin Parmar, PhD, from the Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden. “If successful, using stem cells as a source of transplantable dopamine-producing nerve cells could revolutionize care of the PD patient in the future. A single surgery could potentially provide a transplant that would last throughout a patient’s lifespan, reducing or altogether avoiding the need for dopamine-based medications.”

The authors have analyzed how newly developed stem cell technologies could be used to treat PD, and how clinical researchers are moving very quickly to translate this technology to early clinical trials. In the past, most transplantation studies in PD used human cells from aborted embryos. While these transplants could survive and function for many years, there were scientific and ethical issues: fetal cells are in limited supply, and they are highly variable and hard to quality control. Only some patients benefited, and some developed side effects from the grafts, such as uncontrollable movements called dyskinesias.

Recent strides in stem cell technology mean that quality, consistency, activity, and safety can be assured, and that it is possible to grow essentially unlimited amounts of dopamine-producing nerve cells in the laboratory for transplantation. This approach is now rapidly moving into initial testing in clinical trials. The choice of starting material has also expanded with the availability of multiple human embryonic stem cell lines, as well as the possibilities for producing induced pluripotent cells, or neuronal cells from a patient’s own blood or skin cells. The first systematic clinical transplantation trials using pluripotent stem cells as donor tissue were initiated in Japan in 2018.

“We are moving into a very exciting era for stem cell therapy,” commented Dr. Parmar. “The first-generation cells are now being trialed and new advances in stem cell biology and genetic engineering promise even better cells and therapies in the future. There is a long road ahead in demonstrating how well stem cell-based reparative therapies will work, and much to understand about what, where, and how to deliver the cells, and to whom. But the massive strides in technology over recent years make it tempting to speculate that cell replacement may play an increasing role in alleviating at least the motor symptoms, if not others, in the decades to come.”

“With several research groups, including our own centers, quickly moving towards testing of stem cell therapies for PD, there is not only a drive to improve what is possible for our patients, but also a realization that our best chance is harmonizing efforts across groups,” added Dr. Henchcliffe. “Right now, we are just talking about the first logical step in using cell therapies in PD. Importantly, it could open the way to being able to engineer the cells to provide superior treatment, possibly using different types of cells to treat different symptoms of PD like movement problems and memory loss.”

“This approach to brain repair in PD definitely has major potential, and the coming two decades might also see even greater advances in stem cell engineering with stem cells that are tailor-made for specific patients or patient groups,” commented Patrik Brundin, MD, PhD, Van Andel Research Institute, Grand Rapids, MI, USA, and J. William Langston, MD, Stanford Udall Center, Department of Pathology, Stanford University, Palo Alto, CA, USA, Editors-in-Chief of the Journal of Parkinson’s Disease. “At the same time, there are several biological, practical, and commercial hurdles that need circumventing for this to become a routine therapy.”

###

Media Contact
Diana Murray
[email protected]
718-640-5678

Related Journal Article

http://dx.doi.org/10.3233/JPD-181488

Tags: Cell BiologyMedicine/HealthParkinson
Share12Tweet7Share2ShareShareShare1

Related Posts

Natural Extracts vs. Chlorhexidine on Streptococcus mutans

November 6, 2025

Nurses and Carers’ Perspectives on CSNAT Intervention

November 6, 2025

Revolutionizing UK Eye Health Research Through Integration of National Data Resources

November 6, 2025

Midlife Cardiovascular Health Decline Associated with Elevated Dementia Risk

November 6, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Phylogenetic Confidence During Pandemics

Natural Extracts vs. Chlorhexidine on Streptococcus mutans

Nurses and Carers’ Perspectives on CSNAT Intervention

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.