• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, January 30, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Can resilience be learned? Study finds that prior stressful events can help build resilience

Bioengineer by Bioengineer
October 19, 2022
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Faced with climate change, a pandemic, and political unrest around the globe, it can feel all too easy to succumb to a sense of hopelessness. How do some people bounce back from adversity faster than others, and can those who struggle teach themselves to be more resilient over time?

Mice in confrontation

Credit: Danielle Capparella, Princeton University

Faced with climate change, a pandemic, and political unrest around the globe, it can feel all too easy to succumb to a sense of hopelessness. How do some people bounce back from adversity faster than others, and can those who struggle teach themselves to be more resilient over time?

A new study conducted in mice and published Oct. 19 in the journal Nature suggests resilience can be learned, and can even be reinforced. A team of researchers from the Princeton Neuroscience Institute placed small mice in close proximity with larger, aggressive mice and found that a display of defensive behaviors predicted the mice’s ability to be resilient after the stressful event. Further, the team found that by activating dopamine while the mice fought back, they could further reinforce resilience.

From the research’s inception, Lindsay Willmore, who earned her Ph.D. in 2022 and is lead author on the paper, was intrigued by the relatively rare subset of mice who would defend themselves tenaciously when faced with an aggressor.

“They’d turn back towards the aggressor, they’d throw their paws out, they’d jump on him, and they would just not give up,” said Willmore. “I thought, wow, there’s something going on in these guys’ brains that’s super interesting and could be the key to resilience.”

In the study, the researchers gauged resilience by monitoring the mice’s behaviors in the 10 days during which they sustained attacks by the aggressor.

The mice that tended not to defend themselves ended up displaying depression-like behaviors such as social avoidance following the stressful event. Meanwhile, the mice that fought back displayed greater resilience.

By stimulating dopamine while the mice were fighting back, the researchers found they could make the mice even more likely to become resilient. On the flip side, stimulating dopamine during avoidant behavior did not make the mice more resilient.

“It’s a complicated environment where a mouse has to decide what to do around a bully mouse,” said Ilana Witten, a professor of neuroscience and author on the study. “What decision it makes has profound consequences in terms of how it ends up.”

While the defensive stances associated with fighting back were key in predicting a mouse’s resilience in the face of attack, Willmore said, “Even more strongly related to resilience was how much dopamine the animals had in their reward system during the time when they were starting to fight back. That’s what was really cool to me — that an animal that is not just fighting back but is rewarded for fighting back is the one that becomes resilient.”

For the study, the researchers put a smaller mouse in a cage with a larger, more aggressive mouse that typically would attack its smaller cage-mate. Afterward, the two mice would stay in the enclosure but this time separated by a wall so that they could not interact physically. 

“I’m very interested in the question of whether we can teach resilience,” said said Annegret Falkner, an assistant professor of neuroscience and author on the paper. The series of experiments the team conducted seemed to suggest the answer was indeed yes, that the mice could be nudged toward performing resilient behaviors.

While the researchers began the project before the start of the COVID-19 pandemic, Falkner said since the pandemic hit, she’s been thinking more than ever about resilience. “We need to think about ways to help the people who seem to be more susceptible to cope with the stresses of the world,” said Falkner.

As the researchers continue their studies on resilience, they hope that in the future such work could be applied beyond animals to human health. For example, devices such as smart watches could give real-time feedback about good habits to promote healthy mechanisms like resilience. “Information about our dynamic interactions with the environment will be useful for tracking our habits that might be helpful or harmful,” said Willmore.

The study was funded by the New York Stem Cell Foundation, the Esther A. and Joseph Klingenstein Fund, the Simons Foundation, the Alfred P. Sloan Foundation, the National Science Foundation, and the National Institutes of Health.

The study, “Behavioral and dopaminergic signatures of resilience,” by Lindsay Willmore, Courtney Cameron, John Yang, Ilana Witten and Annegret Falkner, was published in the journal Nature on Oct. 19, 2022. DOI 10.1038/s41586-022-05328-2.



Journal

Nature

DOI

10.1038/s41586-022-05328-2

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Behavioral and dopaminergic signatures of resilience

Article Publication Date

19-Oct-2022

COI Statement

The authors declare no competing interests.

Share12Tweet8Share2ShareShareShare2

Related Posts

A clump of sea campions next to some thrift or sea pinks.

Ancestral variation guides future environmental adaptations

January 27, 2023
Motile Sperm and Frequent Abortions in Spreading Earthmoss

Motile sperm and frequent abortions in spreading earthmoss

January 27, 2023

A transnational collaboration leads to the characterization of an emergent plant virus

January 26, 2023

Study shows that bioprinted artificial skin can be used in cosmetics and drugs testing

January 26, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    64 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

A fairy-like robot flies by the power of wind and light

UK’s Overseas Territories at ongoing risk from wide range of invasive species

World-first guidelines created to help prevent heart complications in children during cancer treatment

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 43 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In