• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, January 11, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Can 3D-printing musical instruments produce better sound than traditional instruments?

Bioengineer by Bioengineer
December 5, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Investigators in China created a functioning 3D-printed ukulele and used acoustics to compare its sound quality to a standard wooden instrument

IMAGE

Credit: Xiaoyu Niu


SAN DIEGO, December 5, 2019 — Music is an art, but it is also a science involving vibrating reeds and strings, sound waves and resonances. The study of acoustics can help scientists produce beautiful music even with musical instruments fashioned with high-tech methods, such as 3D printing.

Xiaoyu Niu, from the University of Chinese Academy Sciences, and other researchers studied the sound quality of a 3D-printed ukulele and compared it to a standard wooden instrument. Niu will present the group’s results in a talk, “A Comparison on Sound Quality of PLA 3D Printing Ukulele and Single Board Wooden Ukulele,” at the 178th Meeting of the Acoustical Society of America, which will be held Dec. 2-6, at the Hotel del Coronado in San Diego. Niu’s talk is part of a session on “General Topics in Musical Acoustics,” to be held beginning at 9:00 a.m. on Thursday, Dec. 5.

The ukulele studied by Niu’s group was created with a 3D printer using a type of plastic known as polylactic acid, or PLA. This substance has become quite popular for producing 3D-printed objects, since the printing can be done at low temperatures.

Niu found under the same plucking force, the wooden ukulele was louder than the 3D-printed one. The investigators also found the timbre of the two instruments was different. The wooden instrument exhibited more high-frequency vibrations than the 3D-printed ukulele.

“We found that the A-weighted sound pressure of the 3D-printed instrument was less than that of the wooden one,” Niu said. A-weighting is used to account for the relative loudness of low frequency sounds perceived by the human ear.

To explain these differences, the investigators carried out computer calculations using a software package known as COMSOL. They first modeled the ukulele shape mathematically. Using formulas for sound resonance and acoustics, they were able to explain the differences between a standard wooden ukulele and the new high-tech 3D-printed version. Niu and co-workers plan to continue their work to further improve this mathematical model.

###

Niu’s presentation 4aMU1, “A Comparison on Sound Quality of PLA 3D Printing Ukulele and Single Board Wooden Ukulele,” will be at 9:00 a.m. PT, Thursday, Dec. 5, in the Coronet room of the Hotel del Coronado in San Diego.

USEFUL LINKS

Main meeting website: http://acousticalsociety.org/asa-meetings/

Technical program: https://asa2019fall.abstractcentral.com/planner.jsp

Press Room: http://acoustics.org/world-wide-press-room/

WORLDWIDE PRESS ROOM

In the coming weeks, ASA’s Worldwide Press Room will be updated with additional tips on dozens of newsworthy stories and with lay language papers, which are 300-500 word summaries of presentations written by scientists for a general audience and accompanied by photos, audio and video. You can visit the site during the meeting at http://acoustics.org/world-wide-press-room/.

PRESS REGISTRATION

We will grant free registration to credentialed journalists and professional freelance journalists. If you are a reporter and would like to attend, contact the AIP Media Line at 301-209-3090. For urgent requests, staff at [email protected] can also help with setting up interviews and obtaining images, sound clips or background information.

LIVE MEDIA WEBCAST

Press briefings will be webcast live from the conference Tuesday, Dec. 3, in Hospitality Suite 3103 of the Hotel del Coronado in San Diego. Register at https://webcast.aipwebcasting.com/go/asa-dec3-19 to watch the live webcast. The schedule will be posted at the same site as soon as it is available.

ABOUT THE ACOUSTICAL SOCIETY OF AMERICA

The Acoustical Society of America (ASA) is the premier international scientific society in acoustics devoted to the science and technology of sound. Its 7,000 members worldwide represent a broad spectrum of the study of acoustics. ASA publications include The Journal of the Acoustical Society of America (the world’s leading journal on acoustics), Acoustics Today magazine, books, and standards on acoustics. The society also holds two major scientific meetings each year. For more information about ASA, visit our website at http://www.acousticalsociety.org.

Media Contact
Larry Frum
[email protected]
301-209-3090

Tags: AcousticsAnthropologyArts/CultureChemistry/Physics/Materials SciencesTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Advancing Alkene Chemistry: Homologative Difunctionalization Breakthrough

January 8, 2026
Biocompatible Ligand Enables Safe In-Cell Protein Arylation

Biocompatible Ligand Enables Safe In-Cell Protein Arylation

January 8, 2026

Monovalent Pseudo-Natural Products Boost IDO1 Degradation

January 7, 2026

Catalytic Enantioselective [1,2]-Wittig Rearrangement Breakthrough

January 7, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    154 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    146 shares
    Share 58 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    66 shares
    Share 26 Tweet 17
  • Impact of Vegan Diet and Resistance Exercise on Muscle Volume

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Developing Efficient Protocols for Respiratory Virus Biobank

Young Male Refugees’ Mental and Sexual Health Insights

New Marine-Derived Polyketides Unlock Antibiotic Potential

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.