• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Calculating the “fingerprints” of molecules with artificial intelligence

Bioengineer by Bioengineer
June 14, 2022
in Chemistry
Reading Time: 2 mins read
0
GNN
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

“Macromolecules but also quantum dots, which often consist of thousands of atoms, can hardly be calculated in advance using conventional methods such as DFT,” says PD Dr. Annika Bande at HZB. With her team she has now investigated how the computing time can be shortened by using methods from artificial intelligence.

GNN

Credit: K. Singh, A. Bande/HZB

“Macromolecules but also quantum dots, which often consist of thousands of atoms, can hardly be calculated in advance using conventional methods such as DFT,” says PD Dr. Annika Bande at HZB. With her team she has now investigated how the computing time can be shortened by using methods from artificial intelligence.

The idea: a computer programme from the group of “graphical neural networks” or GNN receives small molecules as input with the task of determining their spectral responses. In the next step, the GNN programme compares the calculated spectra with the known target spectra (DFT or experimental) and corrects the calculation path accordingly. Round after round, the result becomes better. The GNN programme thus learns on its own how to calculate spectra reliably with the help of known spectra.

“We have trained five newer GNNs and found that enormous improvements can be achieved with one of them, the SchNet model: The accuracy increases by 20% and this is done in a fraction of the computation time,” says first author Kanishka Singh. Singh participates in the HEIBRiDS graduate school and is supervised by two experts from different backgrounds: computer science expert Prof. Ulf Leser from Humboldt University Berlin and theoretical chemist Annika Bande.

“Recently developed GNN frameworks could do even better,” she says. “And the demand is very high. We therefore want to strengthen this line of research and are planning to create a new postdoctoral position for it from summer onwards as part of the Helmholtz project “eXplainable Artificial Intelligence for X-ray Absorption Spectroscopy”.”

 

Annotation:

The work was carried out within the framework of the HEIBRiDS graduate school and is being supported by the Helmholtz project “eXplainable Artificial Intelligence for X-ray Absorption Spectroscopy” (XAI-4-XAS).

The core of the project is to extend GNN, as used at HZB, to very large molecules in combination with the probabilistic analysis of molecular motifs developed at HEREON. It is used to capture only the relevant part of the configuration phase space of the molecules, which is necessary for the accurate prediction of X-ray spectra. The results of the ML predictions allow a rigorous interpretation of XAS experiments, so that characteristic parts of the spectrum of an extended material can be assigned 1:1 to its specific structural subgroups.



Journal

Journal of Chemical Theory and Computation

DOI

10.1021/acs.jctc.2c00255

Method of Research

Computational simulation/modeling

Subject of Research

Not applicable

Article Title

Graph Neural Networks for Learning Molecular Excitation Spectra

Article Publication Date

6-Jun-2022

COI Statement

none

Share12Tweet8Share2ShareShareShare2

Related Posts

Elevated Short-Chain PFAS Detected in Blood of Wilmington Residents

October 27, 2025
blank

Bezos Earth Fund Awards $2M to UC Davis and American Heart Association to Pioneer AI-Designed Foods

October 24, 2025

Organocatalytic Intramolecular Macrocyclization of Quinone Methylidenes with Alcohols Achieves Enantio-, Atropo-, and Diastereoselectivity

October 24, 2025

Breakthrough Discovery of Elusive Solar Waves That May Energize the Sun’s Corona

October 24, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1285 shares
    Share 513 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    197 shares
    Share 79 Tweet 49
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    134 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Emotional Intelligence Boosts Healthcare Workers’ Well-Being

Listening to Music During Surgery Lowers Anesthetic Needs and Stress Responses

Screening Neonatal Hypoglycemia in Infants of Untested Mothers

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.