• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, March 23, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Calcium: A key player for a promising and safe brain treatment?

Bioengineer by Bioengineer
March 13, 2023
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from Tokyo Medical and Dental University (TMDU) find that the side effects caused by treating brain diseases with antisense oligonucleotides are related to altered calcium balance

Mechanism of neurological side effects by antisense oligonucleotides

Credit: Department of Neurology and Neurological Science, TMDU

Researchers from Tokyo Medical and Dental University (TMDU) find that the side effects caused by treating brain diseases with antisense oligonucleotides are related to altered calcium balance

Tokyo, Japan – A promising therapy for a range of brain diseases involves antisense oligonucleotides (ASOs)—specialized molecules that can modulate RNA and alter protein production—directly injected into the cerebrospinal fluid, in the space around the brain and spinal cord. Unfortunately, when ASOs are injected like this, they often cause severe side effects. In a recent study published in Molecular Therapy—Nucleic Acids, Japanese researchers have revealed that that such side effects are caused by calcium imbalances in the brain and can be improved by calcium-balance modulators.

Many brain diseases are thought to be caused by specific proteins. ASOs can be created to bind to the RNA that provides a template for a disease-related protein, usually with the aim of making more or less of the protein. To alter protein production in the brain only, ASOs are then injected directly into patients’ cerebrospinal fluid, which flows in and around the whole brain and spinal cord. However, only one such ASO treatment is currently available, to treat spinal muscular atrophy. Many other promising ASOs can induce neurotoxicity (that is, they cause disturbances of consciousness or motor function), which is experienced as unpleasant and sometimes life-threatening side effects. Because the reason for this neurotoxicity is relatively unknown, treating ASO-related neurotoxicity or creating new ASOs with low neurotoxicity is difficult. The researchers from Tokyo Medical and Dental University (TMDU) wanted to address this problem.

“We used three different ASOs that we know are neurotoxic and injected them into the cerebrospinal fluid of mice,” says lead author Chunyan Jia. “The mice showed many abnormal behaviors that indicated acute neurotoxicity, and these behaviors were correlated with changes in calcium levels, as measured in other experiments with neuronal cells.”

Specifically, when the neurotoxic ASOs were used to treat cells, they reduced the levels of free calcium within the cells. Importantly, these reductions were associated with neurotoxicity levels in the mice. The results indicated that calcium levels within cells are important for modulating ASO neurotoxicity, and suggested ways of modifying the calcium balance to reduce neurotoxicity.

“Our findings have important implications for developing effective ASO therapies with fewer harmful side effects,” explains Kotaro Yoshioka, senior author. 

“As well as suggesting drugs that may be used alongside ASOs to reduce neurotoxicity, we also reported a relationship between certain nucleotide sequences in ASOs and greater neurotoxicity; this information may be useful when choosing potential ASOs for clinical use.” says Takanori Yokota, director of the research group.

Given that many neurological diseases have no cure or effective treatment, the development of new therapeutic agents is very important. The findings of this study will pave the way for more ASO-based therapies with fewer side effects, and are also expected to improve the ASO development pipeline for very rare brain diseases.

###

The article, “Change of intracellular calcium level causes acute neurotoxicity by antisense oligonucleotides via CSF route,” was published in Molecular Therapy—Nucleic Acids at DOI: 10.1016/j.omtn.2022.12.010
 



Journal

Molecular Therapy — Nucleic Acids

DOI

10.1016/j.omtn.2022.12.010

Article Title

Change of intracellular calcium level causes acute neurotoxicity by antisense oligonucleotides via CSF route

Share12Tweet8Share2ShareShareShare2

Related Posts

Dr Erin Walsh

A higher dose of magnesium each day keeps dementia at bay

March 23, 2023
Air flow research

Air flow research could reduce disease, contamination spread

March 22, 2023

Memory B cell marker predicts long-lived antibody response to flu vaccine

March 22, 2023

Discovery of anti-mesangial autoantibodies redefines the pathogenesis of IgA nephropathy

March 22, 2023

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    64 shares
    Share 26 Tweet 16
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    42 shares
    Share 17 Tweet 11
  • Insular dwarfs and giants more likely to go extinct

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

UTSA researchers exploit vulnerabilities of smart device microphones and voice assistants

Pressure-based control enables tunable singlet fission materials for efficient photoconversion

New wood-based technology removes 80% of dye pollutants in wastewater

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In