• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, July 6, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

By Odin’s Beard! Tubulins named after the Norse god may be the missing link between single-celled organisms and human cells

Bioengineer by Bioengineer
June 23, 2022
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A team of researchers from Nagoya University in Japan may have discovered a missing link between bacterial cells and animal and plant cells, including those of humans. They named it the Odin tubulin. 

Odin microtubules

Credit: Akihiro Narita

A team of researchers from Nagoya University in Japan may have discovered a missing link between bacterial cells and animal and plant cells, including those of humans. They named it the Odin tubulin. 

The origin of tubulin is crucial for understanding the process of eukaryogenesis, the point at which animal and plant cells separate from bacteria. In animal and plant cells, tubulin forms microtubules which are critical to their internal organization. Tubulin supports the cell, giving it structure, shape, and internal organization. Because it is so essential to the cell, uncovering the origin of tubulin would be a remarkable step in understanding how the complex cells found in animals and plants diverged from the single cells of bacteria. 

Archaeons of the Asgard archaea superphylum are crucial to this research because scientists consider them the closest single-celled relative to animal and plant cells. Although these microscopic single-celled organisms look like bacteria, they differ in genetic makeup and cell structure. Therefore, as an intermediary between bacteria and animal/plant cells, scientists regularly use them to understand the evolution of the features of animal/plant cells. 

In a study published in Science Advances, a group led by Akihiro Narita, Associate Professor of Nagoya University’s Division of Biological Science, Graduate School of Science, in collaboration with Tokyo Institute of Technology, Okayama University, and the Earth-Life Science Institute, used x-rays to investigate a tubulin homolog protein from the archaeon Odinarchaeota whose name comes from Odin, a god from Norse mythology.  

“Its filament structure was surprising. The diameter was 100 nanometers, which is much wider than the microtubules of eukaryotes,” Narita explains. “The architecture was also unique. The molecules polymerize into arcs, which are then assembled into a slinky-like coil. We can view this coil structure as an intermediate in the evolution between FtsZ, a bacteria tubulin homologue that also polymerizes into rings, and the tubulin found in plant and animal cells. ‘ 

Professor Narita’s group has also explained how the tubulin might have evolved. They hypothesize that it emerged before the origin of plant/animal cells. The segregation of chromosomes of increasing size and enlargement of cell size during eukaryogenesis may have required the development of stiffer tubules to navigate the widening cellular distances and/or payloads. This may have produced evolutionary pressure that encouraged a shift from a flexible type to the stiffer parallel protofilament pattern seen in microtubules. 

Professor Narita is excited about the implications of their discoveries. He says, “We believe it is highly likely that microtubules are the middle of the evolutionary process. This discovery reveals part of how eukaryotes – including us – came into being.”

Funding was provided by JST CREST, Japan (grant number JPMJCR19S5); the Japan Society for the Promotion of Science (grant number JP20H00476); and the Moore-Simons Project on the Origin of the Eukaryotic Cell (grant number GBMF9743), as well as by the ELSI-First Logic Astrobiology Donation Program. 



Journal

Science Advances

DOI

10.1126/sciadv.abm2225

Article Title

Structure and dynamics of Odinarchaeota tubulin and the implications for eukaryotic microtubule evolution

Article Publication Date

25-Mar-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Lab-grown “mini-kidneys” unlock secrets of a rare disease

Lab-grown “mini-kidneys” unlock secrets of a rare disease

July 6, 2022
How the epidermal growth factor (EGF) receptor changes its conformation when it binds to EGF.

How a shape-shifting receptor influences cell growth

July 6, 2022

COVID-19 virus spike protein flexibility improved by human cell’s own modifications

July 5, 2022

A rhythmic small intestinal microbiome prevents obesity and type 2 diabetes

July 5, 2022

POPULAR NEWS

  • blank

    Telescopic contact lenses

    40 shares
    Share 16 Tweet 10
  • Oregon State University research finds evidence to suggest Pacific whiting skin has anti-aging properties that prevent wrinkles

    38 shares
    Share 15 Tweet 10
  • Emerging Omicron subvariants BA.2.12.1, BA.4 and BA.5 are inhibited less efficiently by antibodies

    37 shares
    Share 15 Tweet 9
  • The pair of Orcas deterring Great White Sharks – by ripping open their torsos for livers

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Urogenital SystemVehiclesVaccineVirologyWeather/StormsVirusViolence/CriminalsUniversity of WashingtonUrbanizationZoology/Veterinary ScienceWeaponryVaccines

Recent Posts

  • “Unlocking” sarcopenic obesity: A review in portal hypertension & cirrhosis provides clarity on key aspects of disease impact and treatment
  • Death by choking on food: A new review of coronial findings
  • How scientist tested the effect of multicolor lighting on improving people’s psychological state
  • Lab-grown “mini-kidneys” unlock secrets of a rare disease
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....