• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, February 5, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Brookhaven Lab to lead new ‘saturated glue’ theory collaboration

Bioengineer by Bioengineer
December 7, 2022
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

UPTON, NY—The U.S. Department of Energy (DOE) has announced funding for a new Topical Theory Collaboration to be led by DOE’s Brookhaven National Laboratory that will aid in the discovery and exploration of a saturated state of gluons. These aptly named particles carry the nuclear strong force, acting as the ‘glue’ that holds together quarks, the building blocks of all visible matter. By understanding gluons’ ability to split and recombine and potentially reach a state of saturation, scientists hope to gain deeper insight into the strong force and the role gluons play in generating the mass, spin, and other properties of hadrons—composite particles made of quarks, such as the protons and neutrons of atomic nuclei.

Gluons at the Speed of Light

Credit: Brookhaven National Laboratory

UPTON, NY—The U.S. Department of Energy (DOE) has announced funding for a new Topical Theory Collaboration to be led by DOE’s Brookhaven National Laboratory that will aid in the discovery and exploration of a saturated state of gluons. These aptly named particles carry the nuclear strong force, acting as the ‘glue’ that holds together quarks, the building blocks of all visible matter. By understanding gluons’ ability to split and recombine and potentially reach a state of saturation, scientists hope to gain deeper insight into the strong force and the role gluons play in generating the mass, spin, and other properties of hadrons—composite particles made of quarks, such as the protons and neutrons of atomic nuclei.

The SatURated GluE (SURGE) Topical Theory Collaboration aims to develop calculations and a theoretical framework for discovering this unique saturated form of gluonic matter. Such a saturated state is predicted by the theory of quantum chromodynamics (QCD) to be observable in particles accelerated to high energies in particle colliders such as the Relativistic Heavy Ion Collider (RHIC) at Brookhaven Lab, the Large Hadron Collider (LHC) at Europe’s CERN laboratory, and the future Electron-Ion Collider (EIC) at Brookhaven.

“Our goal is to advance calculations to high precision and develop a comprehensive framework that allows us to compare our theoretical understanding of gluons’ behavior to a wide range of experimental data from RHIC and the LHC and make predictions for what we expect to see at the future EIC,” said Bjoern Schenke, the Brookhaven theorist who will serve as Principal Investigator for the SURGE collaboration.

There have been hints of gluon saturation at RHIC and the LHC, including in a recent analysis reported by RHIC’s STAR collaboration. Recent upgrades expanding the “forward” range of particle detection at STAR and a new RHIC detector, sPHENIX, will also advance scientists’ ability to study the behavior of gluons. The new theory collaboration will help to coordinate these efforts by providing inputs for essential measurements, and by setting consistent benchmarks for accuracy to validate or nullify such searches. Establishing this framework is essential to prepare physicists for “Day 1” discovery physics at the EIC, where signatures of gluon saturation should be fully accessible in the first years of EIC data taking.

This work will require advances on different theoretical frontiers, including:

  • development of new techniques for computing gluon distributions in the non-saturated regime
  • elevating calculations of the energy evolution towards the saturation regime and of final observables to high precision
  • new developments for computing the formation and modeling of the final particles that emerge from these collisions
  • Monte-Carlo implementations of these calculations, which mimic events as they occur in the experiments.

Obtaining final results that allow a global analysis of this data will rely on a comprehensive and iterative framework that incorporates all these developments. In proposing SURGE, the team emphasized the importance of a collaborative effort from experts in the different areas, as well as close interaction of theorists and experimentalists.

To achieve these goals, the SURGE collaboration will receive $1.95 Million over five years from the Office of Nuclear Physics within DOE’s Office of Science. The funding will help to support theorists from a wide range of backgrounds and help to support the future workforce for the field, including five postdoctoral researchers, seven graduate students, and one undergraduate student at 13 institutions. There will also be a bridge position at the University of Illinois at Urbana Champaign, a key collaborator in Brookhaven Lab’s nuclear physics research. Schenke will serve as SURGE co-spokesperson, along with Anna Stasto, a professor at Penn State University.

“The SURGE Topical Theory Collaboration is a tremendous opportunity to bring together many experts in the field and advance our understanding of many fundamental questions in nuclear physics, including the origin of the mass and spin of hadrons and the unique role of gluons,” Stasto said. 

Partnering institutions include Thomas Jefferson National Accelerator Facility/Old Dominion University; McGill University; The City University of New York, Baruch College; the University of California, Los Angeles; Stony Brook University; The Ohio State University; University of Connecticut; Los Alamos National Laboratory; University of Illinois at Urbana Champaign; Southern Methodist University; Lebanon Valley College; New Mexico State University; North Carolina State University; Penn State University;  University of California Berkeley.

Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit science.energy.gov.

Follow @BrookhavenLab on Twitter or find us on Facebook.

 

Related Links

  • Department of Energy Announces $11.24 Million for Research on Nuclear Theory Topical Collaborations
  • Topical Theory Collaboration on Heavy Flavor


Share12Tweet8Share2ShareShareShare2

Related Posts

World Cancer Day

Health Equity Report Card pilot project to help close the care gap highlighted on World Cancer Day

February 4, 2023
AC hum noise-based detection using HumTouch.

Tech that turns household surfaces into touch sensors is a touch closer to application

February 4, 2023

Preference for naturally talented over hard workers emerges in childhood, HKUST researchers find

February 4, 2023

Black South Africans report higher life satisfaction and are at less risk for depression post-migration, MU study finds

February 3, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    65 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Health Equity Report Card pilot project to help close the care gap highlighted on World Cancer Day

Tech that turns household surfaces into touch sensors is a touch closer to application

Preference for naturally talented over hard workers emerges in childhood, HKUST researchers find

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 42 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In