• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Bristol scientists see through glass frogs’ translucent camouflage

Bioengineer by Bioengineer
May 25, 2020
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Dr James Barnett

Glass frogs are well known for their see-through skin but, until now, the reason for this curious feature has received no experimental attention.

A team of scientists from the University of Bristol, McMaster University, and Universidad de Las Américas Quito, sought to establish the ecological importance of glass frog translucency and, in doing so, have revealed a novel form of camouflage.

Using a combination of behavioural trials in the field, computational visual modelling and a computer-based detection experiment, the study published in PNAS reveals that, while glass frog translucency does act as camouflage, the mechanism differs from that of true transparency.

Lead author, Dr James Barnett who began the research while a PhD student at the University of Bristol and is now based at McMaster University in Canada, said:

“The frogs are always green but appear to brighten and darken depending on the background. This change in brightness makes the frogs a closer match to their immediate surroundings, which are predominantly made up of green leaves. We also found that the legs are more translucent than the body and so when the legs are held tucked to the frog’s sides at rest, this creates a diffuse gradient from leaf colour to frog colour rather than a more salient sharp edge. This suggests a novel form of camouflage: ‘edge diffusion’.”

Dr Barnett said scientific debate had often been skeptical of the degree to which glass frogs can be called transparent.

“Transparency is, at face value, the perfect camouflage. It is relatively common in aquatic species where animal tissue shares a similar refractive index to the surrounding water. However, air and tissue are quite different in their refractive indices, so transparency is predicted to be less effective in terrestrial species. Indeed, terrestrial examples are rare. Although glass frogs are one commonly cited example of terrestrial transparency, their sparse green pigmentation means they are better described as translucent,” said Dr Barnett.

Dr Barnett’s PhD was supervised by Professor Nick Scott-Samuel, an expert in visual perception from the University of Bristol’s School of Psychological Sciences, and Innes Cuthill, Professor of Behavioural Ecology from Bristol’s School of Biological Sciences. Professor Scott-Samuel said:

“Our study addresses a question that has been the topic of much speculation, both among the public and the scientific community. We now have good evidence that the frogs’ glass-like appearance is, indeed, a form of camouflage.”

Professor Cuthill said: “Animal camouflage has long been a textbook example of the power of Darwinian natural selection. However, in truth, we are only beginning to unravel how different forms of camouflage actually work. Glass frogs illustrate a new mechanism that we hadn’t really considered before.”

###

Media Contact
Shona East
[email protected]

Tags: BiodiversityBiologyEcology/EnvironmentZoology/Veterinary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Impact of Sex Differences on Health: A Review

October 13, 2025
Social Factors Impact Systemic Hormone Therapy Use in Midlife Women

Social Factors Impact Systemic Hormone Therapy Use in Midlife Women

October 12, 2025

Immunomodulatory Effects of Lacticaseibacillus casei Exopolysaccharides

October 12, 2025

Brainstem Connectivity Differences by Sex and Menopause

October 12, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1228 shares
    Share 490 Tweet 307
  • New Study Reveals the Science Behind Exercise and Weight Loss

    103 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    90 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advancements in Interfaces for High-Frequency Brain Signal Reading

Food’s Impact on Species Extinction Varies Significantly

Accelerated Sterility Testing for Biopharmaceuticals in One Day

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.