• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Bringing the ‘sticky’ back to pancreatic cancer

Bioengineer by Bioengineer
February 3, 2020
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Tohoku University


A multidisciplinary team of researchers at Japan’s Tohoku University has found that a gene regulator, called BACH1, facilitates the spread of pancreatic cancer to other parts of the body. The scientists, who published their findings in the journal Cancer Research, say drugs that control BACH1 could improve disease prognosis.

“Pancreatic cancer is a malignant disease with one of the poorest prognoses,” says biochemist Kazuhiko Igarashi, who led the study. “One of the reasons for this is that pancreatic cancer cells undergo rapid, profound metastasis to other organs, like the liver. We found how pancreatic cancer cells acquire this ability for metastasis.”

Igarashi, surgeon-scientist Michiaki Unno and their team investigated the effects of silencing and over-expressing the BACH1 transcription factor in pancreatic cancer cells. Previous studies had already identified a role for this gene regulator in promoting breast cancer metastasis. But its role in pancreatic cancer was unknown. The team also grafted pancreatic cancer cells with and without the BACH1 gene disruption into mice. Finally, they studied BACH1 protein levels in human pancreatic cancer tissues and compared them to their survival rates.

Their investigations showed that BACH1 reduces the expression of some genes involved in cell-to-cell interaction, and enhances the expression of others that cause cells to lose their ‘stickiness’ to each other, making them more mobile and invasive.

For example, BACH1 was found to play a role in repressing the gene FOXA1 and activating the gene SNAI2, which ultimately leads to the suppression of a gene called CDH1. This gene codes for a protein called E-cadherin, one of the most important cell surface molecules involved in cell-to-cell adhesion.

“By reducing or abolishing BACH1 activity, the metastatic potential of pancreatic cancer cells was greatly reduced in a mouse model,” adds Igarashi. “We also found that patients at Tohoku University Hospital showed poorer prognoses when their pancreatic cancer cells expressed higher levels of BACH1.”

Further investigations into BACH1’s roles in pancreatic cancer metastasis could lead to the development of therapeutic strategies that reduce metastasis and thus improve the prognosis for people with pancreatic cancer, Igarashi explains.

The team next plans to look for other genes targeted by BACH1 in pancreatic cancer cells, which could have effects other than promoting metastasis.

###

Media Contact
Kazuhiko Igarashi
[email protected]
81-227-177-596

Original Source

https://www.tohoku.ac.jp/en/press/bringing_the_sticky_back_to_pancreatic_cancer.html

Related Journal Article

http://dx.doi.org/10.1158/008-5472.CAN-18-4099

Tags: cancerMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Engaging Families in Advance Care Planning: A Study

October 6, 2025
blank

Designing Thiadiazole β-Carboline Derivatives as Glucosidase Inhibitors

October 6, 2025

Mycoplasma Pneumoniae Linked to Neuromyelitis Optica Case

October 6, 2025

Innovative Modeling for Transcriptomics in FFPE Samples

October 6, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    92 shares
    Share 37 Tweet 23
  • New Insights Suggest ALS May Be an Autoimmune Disease

    71 shares
    Share 28 Tweet 18
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Engaging Families in Advance Care Planning: A Study

N6-methyladenosine Enhances Pork Muscle Quality via Myofiber Regulation

Designing Thiadiazole β-Carboline Derivatives as Glucosidase Inhibitors

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.