• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Breeding a hardier, more nutritious wheat

Bioengineer by Bioengineer
April 15, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Lynn Veenstra

Some new crop varieties are bred to be more nutritious. Others are more resilient, bred to tolerate harsher environmental conditions.

In a new study, researchers report a variety of wheat that combines enhanced nutrition with increased resilience. The researchers also tested a breeding method that could reduce costs and save time compared to traditional methods.

The newly developed wheat variety contains higher levels of a naturally occurring carbohydrate, called fructans.

“Wheat with increased fructan levels can be more climate-resilient in certain situations,” says Lynn Veenstra, a researcher at Cornell University. “These situations include high salinity or cold temperatures”.

Fructans are long chains of the sugar fructose. Unlike the fructose present in foods, such as high-fructose corn syrup, fructans cannot be digested by humans. This makes fructans a good source of soluble fiber.

Previous research has shown that consuming foods with higher fructan levels could also promote healthy gut bacteria.

In the US, a large portion of daily fructan intake comes from wheat products, such as bread. That makes developing high-fructan wheat important.

There’s yet another advantage to using high-fructan wheat. “We wouldn’t have to supplement wheat products with fructans or fiber from other sources,” says Veenstra. “This wheat would already contain higher levels of fructans.”

But breeding high-fructan wheat can be time-consuming and expensive. “The development of nutritionally improved wheat varieties often requires extensive resources,” says Veenstra.

Typically, a process called phenotyping takes the most time. Phenotyping is the measurement of crop characteristics – like fructan levels or yield.

Phenotyping allows plant breeders to compare new and existing varieties of crops. For example, they can test if newer varieties have higher or lower fructan levels than existing crops. At the same time, they need to make sure other crop features – like yield or disease resistance – haven’t been reduced.

A relatively new breeding method can expedite the development of new crop varieties. Veenstra and colleagues tested variations of this method, called genomic selection.

Genomic selection uses a relatively small ‘training’ set of individual plants. Researchers combine phenotyping and genetic data from this training set of plants. Then they use these data to train a statistical model.

Once trained, the statistical model can predict plant characteristics – like fructan levels – based solely on genetics.

“This allows crop breeding without needing to collect data on observed characteristics,” says Veenstra.

Genomic selection saves time and resources in two ways. First, the training set of plants is relatively small. That allows phenotyping to be concluded quickly. Second, genetic testing can often be much quicker than measuring crop characteristics.

Ultimately, genomic selection can allow breeders to save both cost and time during the breeding process.

There are some caveats to using genomic selection, though. Inbreeding can happen, for instance, which can reduce crop diversity. Reduced diversity can make crops susceptible to diseases.

So Veenstra and her colleagues tested two different modes of genomic selection. They found that one method led to wheat with higher fructans while maintaining genomic diversity.

“I think this is the most important finding of this study,” says Veenstra. “Genomic selection can be used for nutritional breeding.”

Researchers still need to know more about the fructans in the new wheat variety. “We also want to determine how stable these fructans are during food processing,” says Veenstra.

For example, yeast degrades different fructans at different rates. That would impact how much fructan ends up in a loaf of bread.

“I believe both wheat growers and consumers stand to benefit from high-fructan wheat,” says Veenstra. “For wheat growers, high-fructan varieties have the potential to withstand climatic stress. For consumers, high-fructan wheat products may have positive impacts on gut-health.”

###

This research was recently published in Crop Science. The work was funded by USDA-NIFA-AFRI grants, award numbers 2009-65300-05661, 2011-68002-30029, and 2005-05130, and by Hatch project 149-447.

Media Contact
Rachel Leege
[email protected]

Related Journal Article

http://dx.doi.org/10.1002/csc2.20130

Tags: Agricultural Production/EconomicsAgricultureBiodiversityClimate ChangeFood/Food ScienceGeneticsNutrition/NutrientsPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Sargassum’s Health Under Ocean Acidification and Nitrogen Boost

November 14, 2025
blank

New Microfluidic ‘MISO’ Platform Achieves High-Resolution Cryo-EM Using Minimal Starting Material

November 14, 2025

Targeting the Hippo Signaling Pathway: A New Therapeutic Approach for Nephronophthisis

November 14, 2025

Duplication and Mutation of Aquaporin Genes Restore Wide Solute Permeability in European Eels

November 14, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    318 shares
    Share 127 Tweet 80
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    210 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    200 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    141 shares
    Share 56 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Understanding Huntington’s Disease: Expansion, Pathology, and Treatments

Impact of Nanosecond Electric Pulses on Mitochondria

Impact of Daily Activity on LVAD Patients’ Lives

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.