• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Breast cancer: AI predicts which pre-malignant breast lesions will progress to advanced cancer

Bioengineer by Bioengineer
October 29, 2019
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Advances understanding of which ‘stage 0’ breast cancer patients are most likely to progress to advanced cancer and who may benefit from additional therapy

IMAGE

Credit: Case Western Reserve University


New research at Case Western Reserve University could help better determine which patients diagnosed with the pre-malignant breast cancer commonly as stage 0 are likely to progress to invasive breast cancer and therefore might benefit from additional therapy over and above surgery alone.

Once a lumpectomy of breast tissue reveals this pre-cancerous tumor, most women have surgery to remove the remainder of the affected tissue and some are given radiation therapy as well, said Anant Madabhushi, the F. Alex Nason Professor II of Biomedical Engineering at the Case School of Engineering.

“Current testing places patients in high risk, low risk and indeterminate risk–but then treats those ‘indeterminates’ with radiation, anyway,” said Madabhushi, whose Center for Computational Imaging and Personalized Diagnostics (CCIPD) conducted the new research. “They err on the side of caution, but we’re saying that it appears that it should go the other way–the middle should be classified with the lower risk.

“In short, we’re probably over-treating patients,” Madabhushi continued. “That goes against prevailing wisdom, but that’s what our analysis is finding.”

The most common breast cancer

Stage 0 breast cancer is the most common type and known clinically as ductal carcinoma in situ (DCIS), indicating that the cancer cell growth starts in the milk ducts.

About 60,000 cases of DCIS are diagnosed in the United States each year, accounting for about one of every five new breast cancer cases, according to the American Cancer Society. People with a type of breast cancer that has not spread beyond the breast tissue live at least five years after diagnosis, according to the cancer society.

Lead researcher Haojia Li, a graduate student in the CCIPD, used a computer program analyze the spatial architecture, texture and orientation of the individual cells and nuclei from scanned and digitized lumpectomy tissue samples from 62 DCIS patients.

The result: Both the size and orientation of the tumors characterized as “indeterminate” were actually much closer to those confirmed as low risk for recurrence by an expensive genetic test called Oncotype DX.

Li then validated the features that distinguished the low and high risk Oncotype groups in being able to predict the likelihood of progression from DCIS to invasive ductal carcinoma in an independent set of 30 patients.

“This could be a tool for determining who really needs the radiation, or who needs the gene test, which is also very expensive,” she said.

The research led by Li was published Oct. 17 in the journal Breast Cancer Research.

Madabhushi established the CCIPD at Case Western Reserve in 2012. The lab now includes nearly 60 researchers. The lab has become a global leader in the detection, diagnosis and characterization of various cancers and other diseases, including breast cancer, by meshing medical imaging, machine learning and artificial intelligence (AI).

Some of the lab’s most recent work, in collaboration with New York University and Yale University, has used AI to predict which lung cancer patients would benefit from adjuvant chemotherapy based on tissue slide images.

That advancement was named by Prevention Magazine as one of the top 10 medical breakthroughs of 2018.

###

Case Western Reserve University is one of the country’s leading private research institutions. Located in Cleveland, we offer a unique combination of forward-thinking educational opportunities in an inspiring cultural setting. Our leading-edge faculty engage in teaching and research in a collaborative, hands-on environment. Our nationally recognized programs include arts and sciences, dental medicine, engineering, law, management, medicine, nursing and social work. About 5,100 undergraduate and 6,200 graduate students comprise our student body. Visit case.edu to see how Case Western Reserve thinks beyond the possible.

Media Contact
Michael Scott
[email protected]
216-368-1004

Tags: Breast CancercancerMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

New Brain PET Tracer Targets TDP-43 Pathology

October 24, 2025

Evaluating Chinese Nurses’ Sexual Harassment Scale Validity

October 24, 2025

Low-Dose Dienogest: 48 Weeks of Endometriosis Relief

October 24, 2025

Democratizing Protein Language Models: Training, Sharing, Collaborating

October 24, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1279 shares
    Share 511 Tweet 319
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    308 shares
    Share 123 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    184 shares
    Share 74 Tweet 46
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    133 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Rab5 GTPases Direct ROP Signaling for Pollen Polarity

New Brain PET Tracer Targets TDP-43 Pathology

Evaluating Chinese Nurses’ Sexual Harassment Scale Validity

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.