• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, June 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Breakthrough: Natural bacteria compound offers safe skin lightening

by
August 6, 2024
in Biology
Reading Time: 5 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Melanin protects the skin—the body’s largest organ and a vital component of the immune system—from the damaging effects of ultraviolet (UV) radiation. When the skin is exposed to UV radiation, melanin production is stimulated in melanocytes, with tyrosinase playing a key role in the biosynthetic pathway. However, disruptions in this pathway caused by UV exposure or aging can lead to excess melanin accumulation, resulting in hyperpigmentation. To address this, tyrosinase inhibitors that suppress melanin synthesis have become valuable in the cosmetic industry. Unfortunately, some of these compounds, such as hydroquinone, have been found to be toxic to human skin, causing issues like vitiligo-like symptoms and rashes. Consequently, hydroquinone is no longer recommended for use.

Three-dimensional plots of molecular docking diagrams of l-tyrosine and cyclo(l-Pro-l-Tyr) complexes with tyrosinase

Credit: Yuuki Furuyama from Tokyo University of Science

Melanin protects the skin—the body’s largest organ and a vital component of the immune system—from the damaging effects of ultraviolet (UV) radiation. When the skin is exposed to UV radiation, melanin production is stimulated in melanocytes, with tyrosinase playing a key role in the biosynthetic pathway. However, disruptions in this pathway caused by UV exposure or aging can lead to excess melanin accumulation, resulting in hyperpigmentation. To address this, tyrosinase inhibitors that suppress melanin synthesis have become valuable in the cosmetic industry. Unfortunately, some of these compounds, such as hydroquinone, have been found to be toxic to human skin, causing issues like vitiligo-like symptoms and rashes. Consequently, hydroquinone is no longer recommended for use.

The increasing demand for safer alternatives has sparked a race to discover tyrosinase inhibitors from microbes that produce compounds with low toxicity. Recently, researchers at Tokyo University of Science (TUS) identified a promising tyrosinase inhibitor from Corynebacterium tuberculostearicum (C. tuberculostearicum), a bacterium commonly found on human skin. The study, led by Assistant Professor Yuuki Furuyama from the Department of Applied Bioscience at TUS, was published in the International Journal of Molecular Sciences on July 4, 2024. Co-authors Ms. Yuika Sekino and Prof. Kouji Kuramochi, also from TUS, contributed to the findings. Dr. Furuyama elaborated on their approach: “Bacteria that reside on our skin and evade immune responses often become commensals, neither benefiting nor harming us. We chose to investigate metabolites produced by these commensal bacteria for their potential as tyrosinase inhibitors. These natural skin-derived products exhibit low toxicity, making them inherently safer.”

After screening over 100 skin-derived bacteria, the team identified C. tuberculostearicum as a producer of a potent tyrosinase-inactivating compound. Their assays utilized tyrosinase from the mushroom Agaricus bisporus to confirm inhibition. Subsequent experiments pinpointed the active compound as cyclo(L-Pro-L-Tyr). The researchers then conducted three-dimensional (3D) docking simulations to elucidate how cyclo(L-Pro-L-Tyr) functions.

“Our goal was to understand how cyclo(L-Pro-L-Tyr) disrupts tyrosinase activity,” explained Dr. Furuyama. “In melanin biosynthesis, tyrosinase initially converts L-tyrosine (L-Tyr) to dihydroxyphenylalanine (DOPA) quinone, which then transforms into DOPA chrome. Ultimately, DOPA chrome polymerizes to produce melanin. Our findings revealed that cyclo(L-Pro-L-Tyr) mimics L-Tyr, binding to and obstructing the substrate-binding pocket of mushroom tyrosinase. This interference renders the enzyme inactive.” Dr. Furuyama emphasized the significance of their discovery: “Our study is the first to identify and elucidate the mechanism of a tyrosinase inhibitor derived from a skin bacterium.”

The team is highly optimistic about the potential of their discovery. Scientific literature supports the non-toxic nature of cyclo(L-Pro-L-Tyr) to human cells, underscoring its suitability as a skin probiotic for combating hyperpigmentation. Moreover, the metabolite exhibits additional beneficial properties such as antimicrobial, antioxidant, and anticancer activities, further enhancing its therapeutic potential across various applications. Of particular interest is the team’s success in extracting substantial quantities of cyclo(L-Pro-L-Tyr) from C. tuberculostearicum, paving the way for potential industrial-scale production. This capability is crucial for ensuring the financial feasibility of manufacturing active ingredients on a large scale.

Despite the promising outlook, Dr. Furuyama acknowledges that there are significant hurdles to overcome before these natural active ingredients can reach consumer shelves. He emphasizes the need for extensive research to precede the widespread adoption of cyclo(L-Pro-L-Tyr) in cosmetics. “Before cyclo(L-Pro-L-Tyr) can be widely used further studies are essential. Testing with human tyrosinase, which differs structurally from mushroom tyrosinase, is crucial. Detailed analyses of its mechanisms of action are also necessary to ensure efficacy and safety,” explains Dr. Furuyama.

In essence, while the potential is considerable, thorough scientific validation and understanding are prerequisites for the eventual application of cyclo(L-Pro-L-Tyr) in skincare products.
 

***

Reference                      

Title of original paper: Cyclo(L-Pro-L-Tyr) isolated from the human skin commensal Corynebacterium tuberculostearicum inhibits tyrosinase

Journal:  International Journal of Molecular Sciences

DOI: https://doi.org/10.3390/ijms25137365

 

About The Tokyo University of Science

Tokyo University of Science (TUS) is a well-known and respected university, and the largest science-specialized private research university in Japan, with four campuses in central Tokyo and its suburbs and in Hokkaido. Established in 1881, the university has continually contributed to Japan’s development in science through inculcating the love for science in researchers, technicians, and educators.

With a mission of “Creating science and technology for the harmonious development of nature, human beings, and society,” TUS has undertaken a wide range of research from basic to applied science. TUS has embraced a multidisciplinary approach to research and undertaken intensive study in some of today’s most vital fields. TUS is a meritocracy where the best in science is recognized and nurtured. It is the only private university in Japan that has produced a Nobel Prize winner and the only private university in Asia to produce Nobel Prize winners within the natural sciences field.

Website: https://www.tus.ac.jp/en/mediarelations/

 

About Assistant Professor Yuuki Furuyama from Tokyo University of Science

Yuuki Furuyama earned his PhD from the Department of Applied Biological Sciences at Tokyo University of Science (TUS) in 2018 and currently serves as an Assistant Professor in the department. His research focuses on applied microbiology, natural products chemistry, and chemical biology. Since 2021, he has authored eight peer-reviewed articles, showcasing his contributions to the field. In recognition of his achievements, Dr. Furuyama was honored with the Biotech Grand Prix 2023 Rohto Award, highlighting his significant impact in biotechnology and related disciplines.

 

Funding information

This research was supported by JSPS KAKENHI grant number 22K14814.



Journal

International Journal of Molecular Sciences

DOI

10.3390/ijms25137365

Method of Research

Experimental study

Subject of Research

Cells

Article Title

Cyclo(L-Pro-L-Tyr) isolated from the human skin commensal Corynebacterium tuberculostearicum inhibits tyrosinase

Article Publication Date

4-Jul-2024

COI Statement

The authors declare no conflicts of interest.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Rewrite University of Cincinnati structural biology research published in prestigious PNAS this news headline for the science magazine post

June 13, 2025
Panelists at a recent debriefing on the 2025 Spirit of Asilomar and the Future of Biotechnology summit.

Rewrite Biotechnology governance entreaties released, echoing legacy of 1975 recombinant DNA guidelines this news headline for the science magazine post

June 13, 2025

Rewrite Museomics highlights the importance of scientific museum collections this news headline for the science magazine post

June 13, 2025

Rewrite High-efficiency leucoplast transit peptides for manipulating plastid protein production as a headline for a science magazine post, using no more than 8 words

June 13, 2025

POPULAR NEWS

  • Green brake lights in the front could reduce accidents

    Study from TU Graz Reveals Front Brake Lights Could Drastically Diminish Road Accident Rates

    158 shares
    Share 63 Tweet 40
  • New Study Uncovers Unexpected Side Effects of High-Dose Radiation Therapy

    75 shares
    Share 30 Tweet 19
  • Pancreatic Cancer Vaccines Eradicate Disease in Preclinical Studies

    68 shares
    Share 27 Tweet 17
  • How Scientists Unraveled the Mystery Behind the Gigantic Size of Extinct Ground Sloths—and What Led to Their Demise

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Are Traditional Podcasters Becoming Obsolete? AI-Driven Podcasts Pave the Way for Accessible Science

Rewrite The untranslatability of environmental affective scales: insights from indigenous soundscape perceptions in China as a headline for a science magazine post, using no more than 8 words

Rewrite Two frontiers: Illinois experts combine forces to develop novel nanopore sensing platform this news headline for the science magazine post

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.