• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Breakthrough in fight against plant diseases

Bioengineer by Bioengineer
March 20, 2019
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: La Trobe University

A global research team including scientists from La Trobe University have identified specific locations within plants’ chromosomes capable of transferring immunity to their offspring.

The findings could lead to new ways of preventing disease in crops – of great potential benefit to farmers.

Led by the University of Sheffield (UK), the research team identified, for the first time, specific locations (loci) within a plant’s chromosomes that impart disease resistance to their offspring by undergoing a reversible biochemical modification known as DNA methylation, in response of pathogen attack.

Published in the journal eLife, the research identifies four DNA loci that control disease resistance against a common plant pathogen called downy mildew. Importantly, this resistance was not associated with any negative effects on growth or resistance against other environmental stresses.

La Trobe University Research Fellow Dr Ritushree Jain said that when plants are repetitively attacked by pathogens, they develop a ‘memory’ (known as priming in plants) of this encounter which enables them to fight efficiently when attacked again.

“One of the mechanisms for transferring this ‘memory’ to their next generation via seeds is DNA methylation,” Dr Jain said.

“It is an epigenetic phenomenon – meaning there is no change in the DNA sequence.”

Dr Jain explained the potential benefit to farmers these findings offer.

“Not only could this significant discovery lead to new ways of preventing disease in important crops, but it could also help reduce our reliance on pesticides,” Dr Jain said.

Lead researcher Professor Jurriaan Ton from the University of Sheffield’s P3 Plant Production and Protection Centre said findings from the study pave the way for further research into how epigenetics can help to improve disease resistance in food crops.

“We now hope to use this study to carry out further research to understand how these epigenetic loci control so many different defence genes,” Professor Ton said.

“We are also keen to participate in more translational studies, in order to find out whether epigenetics can be used to prime disease resistance in crops that are vital to food supplies around the world.”

Led by the University of Sheffield in the UK, the research was conducted in collaboration with La Trobe University, PSL University (Paris) and the Technical University of Munich (Germany).

The research paper, Identification and characterisation of hypomethylated DNA loci controlling quantitative resistance in Arabidopsis, was published in eLife.

###

Media Contact: Claire Bowers – [email protected] – 9479 2315 / 0437 279 903

Media Contact
Claire Bowers
[email protected]

Original Source

https://www.latrobe.edu.au/news/articles/2019/release/breakthrough-in-fighting-plant-disease

Related Journal Article

http://dx.doi.org/10.7554/eLife.40655.001

Tags: Agricultural Production/EconomicsAgricultureFertilizers/Pest ManagementGenesPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

AI-Enhanced Optical Coherence Photoacoustic Microscopy Revolutionizes 3D Cancer Model Imaging

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.