• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, May 25, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Breakthrough in cell research: Jacobs University scientists discover new method for drug delivery

Bioengineer by Bioengineer
March 24, 2022
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

“Our method has potential for broad application,” said Werner Nau, Professor of Chemistry, in whose research group the method was developed. It is based on a new chemical concept that the researchers have been working on since 2015. Until now, complex and sometimes toxic formulations had to be used to overcome the cell walls. The Jacobs University researchers are achieving this effect by using water-soluble clusters based on the chemical element boron. In experiments, they demonstrated that there is an optimal size for these boron clusters at which the penetration process is particularly efficient. “If the molecules are too small, they don’t work. If they are too large, they have membrane-damaging properties,” reported Andrea Barba-Bon, the first author of the article in Nature and a post-doctoral researcher who carried out the first successful experiments.

Andrea Barba-Bon and Werner Nau

Credit: Jacobs University Bremen

“Our method has potential for broad application,” said Werner Nau, Professor of Chemistry, in whose research group the method was developed. It is based on a new chemical concept that the researchers have been working on since 2015. Until now, complex and sometimes toxic formulations had to be used to overcome the cell walls. The Jacobs University researchers are achieving this effect by using water-soluble clusters based on the chemical element boron. In experiments, they demonstrated that there is an optimal size for these boron clusters at which the penetration process is particularly efficient. “If the molecules are too small, they don’t work. If they are too large, they have membrane-damaging properties,” reported Andrea Barba-Bon, the first author of the article in Nature and a post-doctoral researcher who carried out the first successful experiments.

The scientists succeeded in placing various bioactive substances in cells. Among them were those that successfully overcame antibiotic resistance. “There are many potential applications to be developed with this method, for example, for the delivery of the next generation of therapeutics such as short peptides or even protein-based drugs” said Javier Montenegro, in whose Spanish research group the cell biology experiments were conducted. Peptides are sought-after active ingredients. They are used, for example, in cancer therapies, antibiotics, vaccines, and numerous novel drugs. They are also used in the cosmetics industry.

The process also has the potential to give a boost to fundamental research in cell biology. It makes it much easier to transport positively charged and neutral drug molecules or fluorescent dyes into living cells, which previously could not be introduced.

“Boron clusters as broadband membrane transporters,” is the title of the article in Nature. The journal, first published in the United Kingdom in 1869, is one of the most influential and renowned publications in the field of natural sciences. “After several years of intensive basic research, it is now a great success for us to be able to publish the application potential of our research results there,” Professor Nau said.



Journal

Nature

Method of Research

Experimental study

Subject of Research

Cells

Article Title

Boron clusters as broadband membrane carriers

Article Publication Date

23-Mar-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

What's behind a monkey's poker face?

Some apes might pull a poker face

May 25, 2022
Two strongly bonded male Guinea baboons (Papio papio)

When male buddies become less important than female mating partners

May 25, 2022

HKU Conservation Forensics Lab develops novel environmental DNA monitoring method for identifying rare and endangered fish species sold in Hong Kong wet markets

May 25, 2022

First Australians ate giant eggs of huge flightless birds, ancient proteins confirm

May 25, 2022

POPULAR NEWS

  • Masks

    Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11
  • Sweet discovery could drive down inflammation, cancers and viruses

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

VaccinesWeaponryVirusVehiclesUniversity of WashingtonViolence/CriminalsVaccineZoology/Veterinary ScienceUrbanizationWeather/StormsVirologyUrogenital System

Recent Posts

  • Microsoft Imagine Cup: Jacobs University students win World Championship
  • Why COVID vaccines are deemed non-essential for UK young children
  • The Cinderella Project: The right to see yourself in the mirror and like what you see
  • Some apes might pull a poker face
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....