• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, May 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Bioinformatics

Breakthrough in hybrid species science

Bioengineer by Bioengineer
March 9, 2014
in Bioinformatics, Genomics
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Massey University scientists have discovered a universal law that explains how hybrid species survive and thrive.

Breakthrough in hybrid species science

Massey University computational biologist Murray Cox

Computational biologist Professor Murray Cox and molecular biologist Dr Austen Ganley led the research that analysed what happens when a new species is formed. Their findings were published today in the Public Library of Science online journal, Genetics.

“When two very different species suddenly merge together, a new species is created instantaneously that contains two different sets of machinery, or RNA (Ribonucleic acid) as it’s known,” Professor Cox says. “Some parts of this machinery won’t work together, so we asked the question, how does this hybrid survive?”

Professor Cox says hybrids are surprisingly common and can be seen in the cotton used to make bed-sheets, the wheat in bread and in New Zealand alpine plants.

His team used advanced computational biology methods to sequence and analyse hundreds of millions of RNA copies of a fungus found in grass. “This particularly fungus [epichloe endophyte] is one of the good guys,” he says. “The plant gives the fungus a place to live, and the fungus produces chemicals that kill insects that try to eat the grass. This hidden relationship is a key reason for the success of New Zealand’s multibillion dollar dairy industry.”

Professor Cox was amazed to find that the RNA levels in the grass fungus were almost identical to the patterns found in cotton – the only other hybrid species that has undergone similar analysis.

“These species are radically different, for starters, one is a plant, the other is a fungus,” he says. “Therefore we realised we had identified universal rules that dictate how gene expression has to behave in order for hybrid species to control their two sets of machinery [RNA], regardless of what exact species those hybrids are.”

These genetic rules revealed that the hybrid’s genes mimic one parent or the other. “The RNA levels showed one copy effectively gets turned off. It’s not simply an average of what its parents have. This pattern occurs in both fungi and plants — in other words, there are universal rules that control gene expression levels in hybrids across the tree of life.”

It is this final point that has generated the greatest interest in the scientific community and earned Professor Cox’s research a place in the PLOS Genetics publication.

Story Source:

The above story is based on materials provided by Massey University.

Share13Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Ferrets, cats and civets most susceptible to coronavirus infection after humans

December 10, 2020
IMAGE

Artificial intelligence finds surprising patterns in Earth’s biological mass extinctions

December 10, 2020

Within a hair’s breadth–forensic identification of single dyed hair strand now possible

December 9, 2020

Deep Longevity publishes an epigenetic aging clock of unprecedented accuracy

December 8, 2020
Please login to join discussion

POPULAR NEWS

  • blank

    Volatile-Rich Cap Found Above Yellowstone Magma

    665 shares
    Share 266 Tweet 166
  • Natural Supplement Shows Potential to Slow Biological Aging and Enhance Muscle Strength

    89 shares
    Share 36 Tweet 22
  • Analysis of Research Grant Terminations at the National Institutes of Health

    78 shares
    Share 31 Tweet 20
  • The Rise of Eukaryotic Cells: An Evolutionary Algorithm Spurs a Major Biological Transition

    68 shares
    Share 27 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Matrix Metalloproteinase-10 Drives Kidney Fibrosis via β-Catenin

Obesity Drugs Aid Weight Loss After Bariatric Surgery

METTL13 Controls MYC, Drives Leukemia Cell Survival

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.