• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, March 21, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Breaking the temperature barrier of hydrothermal carbonization of lignocellulosic biomass

Bioengineer by Bioengineer
January 30, 2023
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Hydrothermal carbonization of lignocellulosic biomass—the most abundant renewable feedstock—is a promising method for the production of carbon materials with negative carbon emissions. This method has attracted a great deal of attention over the past decade because it uses water which is inherently present in green biomass and non-toxic.

THE PERFORMANCE OF DECOUPLED TEMPERATURE AND PRESSURE HYDROTHERMAL PROCESS.

Credit: THE AUTHORS

Hydrothermal carbonization of lignocellulosic biomass—the most abundant renewable feedstock—is a promising method for the production of carbon materials with negative carbon emissions. This method has attracted a great deal of attention over the past decade because it uses water which is inherently present in green biomass and non-toxic.

Nonetheless, like everything, hydrothermal carbonization also has its drawbacks—the requirement of high reaction temperature and high energy consumption. To that end, researchers worldwide are actively investigating greener alternatives—a team of researchers from Tsinghua University in China may just have the answer.

The team discovered a new strategy to decouple the temperature and pressure hydrothermal process, which in turn allows the breaking of the temperature limit.

“Using this new approach, we can achieve low-temperature carbonization of lignocellulosic biomass comprising rice straw and poplar leaves at 200 °C—breaking the temperature limit of 230 °C in the conventional process,” says Hui Zhou, corresponding author of the study.

The team demonstrated that the new decoupled temperature and pressure hydrothermal process could break through the protective barrier formed by the highly ordered crystalline structure of cellulose and effectively carbonize cellulose and hemicellulose, producing carbon microspheres with high calorific value, abundant oxygen-containing functional groups, a certain degree of graphitization and good thermal stability.

Cellulose is a key precursor for the formation of carbon microspheres in addition to the protective barrier of biomass structure, and biomass with high cellulose content had a higher potential for the production of well-shaped hydrochar, which can be use as a solid fuel, a soil amendment or an adsorbent for removing pollutants from wastewater streams.

The team’s findings are in the KeAi journal Green Energy & Environment.

Notably, up until now, the approach to improving reaction conditions for biomass conversion has been more in the development of new catalysts; however, there are very few catalysts suitable for hydrothermal carbonization of biomass.

“This new carbon-negative technology can greatly improve the advantages of hydrothermal carbonization technology,” adds study lead author Shijie Yu. “We hope that our results will encourage researchers worldwide to continue their research on hydrothermal carbonization of various types of biomass to contribute to the mitigation of the current climate crisis.”

###

Contact the corresponding author: Hui Zhou, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, P.R. China

Email: [email protected]

LinkedIn: https://www.linkedin.com/in/zhouh/

Twitter: @Hui_Zhou1

The publisher KeAi was established by Elsevier and China Science Publishing & Media Ltd to unfold quality research globally. In 2013, our focus shifted to open access publishing. We now proudly publish more than 100 world-class, open access, English language journals, spanning all scientific disciplines. Many of these are titles we publish in partnership with prestigious societies and academic institutions, such as the National Natural Science Foundation of China (NSFC).



Journal

Green Energy & Environment

DOI

10.1016/j.gee.2023.01.001

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Breaking the temperature limit of hydrothermal carbonization of lignocellulosic biomass by decoupling temperature and pressure

COI Statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Share12Tweet7Share2ShareShareShare1

Related Posts

Amundsen Sea Embayment

3000+ billion tons of ice lost from Antarctic Ice Sheet over 25 years 

March 21, 2023
ATcT-image-1-16x9 (002)

Department of Energy recognizes two decades’ worth of Argonne’s high-quality thermochemical data

March 20, 2023

‘Fishing’ for biomarkers

March 20, 2023

First detection of neutrinos made at a particle collider

March 20, 2023

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    61 shares
    Share 24 Tweet 15
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    42 shares
    Share 17 Tweet 11
  • Insular dwarfs and giants more likely to go extinct

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

The Minderoo-Monaco Commission on Plastics and Human Health issues sweeping new report

3000+ billion tons of ice lost from Antarctic Ice Sheet over 25 years 

Richard McIndoe, PhD, will direct Coordinating Unit for new, national research initiative in diabetes, obesity

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In