• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, March 23, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Breaking bonds: Double-helix unzipping reveals DNA physics

Bioengineer by Bioengineer
March 17, 2023
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Reconstructing accurately how the parts of a complex molecular are held together knowing only how the molecule distorts and breaks up. This was the challenge taken on by a research team led by SISSA’s Cristian Micheletti and recently published on Physical Review Letters. In particular, the scientists studied how a DNA double helix unzips when translocated at high velocity through a nanopore, reconstructing fundamental DNA thermodynamic properties from the sole speed of the process.

Breaking bonds: double-helix unzipping reveals DNA physic

Credit: Antonio Suma and Cristian Micheletti

Reconstructing accurately how the parts of a complex molecular are held together knowing only how the molecule distorts and breaks up. This was the challenge taken on by a research team led by SISSA’s Cristian Micheletti and recently published on Physical Review Letters. In particular, the scientists studied how a DNA double helix unzips when translocated at high velocity through a nanopore, reconstructing fundamental DNA thermodynamic properties from the sole speed of the process.

The translocation of polymers through nanopores has long studied as a fundamental theoretical problem as well as for its several practical ramifications, e.g. for genome sequencing. We recall that the latter involves driving a DNA filament through a pore so narrow that only one of the double-helical strands can pass, while the other strand is left behind. As a result, the translocated DNA double helix will necessarily split and unwind, an effect known as unzipping.

The research team, which also includes Antonio Suma from the University of Bari, first author, and Vincenzo Carnevale from Temple University, used a cluster of computers to simulate the process with different driving forces keeping track of the DNA’s unzipping speed, a type of data that has rarely been studied despite being directly accessible in experiments. Using previously developed theoretical and mathematical models, researchers were able to work “backwards”, using the information on the speed to accurately reconstruct the thermodynamics of the formation and rupture of the double-helix structure.

“Previous theories”, the researchers explain, “set off from detailed knowledge of the thermodynamics of a molecular system which was then used to predict the response to more or less invasive external stresses. This alone is a major challenge in itself. We looked at the inverse problem: we started from the DNA’s response to aggressive stresses, such as the forced unzipping of the double helix, to recover the details of the thermodynamics. Due to the invasive and rapid nature of the unzipping process, the project seemed doomed to fail, and that was probably why it had never been tried before. However, we also knew that the right theoretical and mathematical models, if applicable, could offer us a promising solution to the problem. After analysing the extensive set of collected data, we were very thrilled to discover that this was exactly the case; we were happy we had the right intuition.”

The technique adopted in the study is general, and thus the researchers expect to be able to extend it beyond DNA to other molecular systems that are still relatively unexplored. A case in point are the so-called molecular motors, protein aggregates that use energy to make cyclic transformations, very much like the engines in our everyday life. “Up until now”, researchers stress, “studies on molecular motors have started by formulating hypothesises on their thermodynamics and then comparing predictions with experimental data. The new method that we have validated should allow taking the inverse route, namely using data from out-of-equilibrium experiments to recover the thermodynamics, with clear conceptual and practical advantages.”



Journal

Physical Review Letters

DOI

10.1103/PhysRevLett.130.048101

Method of Research

Computational simulation/modeling

Subject of Research

Not applicable

Article Title

Nonequilibrium Thermodynamics of DNA Nanopore Unzipping

Article Publication Date

27-Jan-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Hydrostatic Pressure-Enabled Tunable Singlet Fission Materials

Pressure-based control enables tunable singlet fission materials for efficient photoconversion

March 23, 2023
New wood-based technology removes 80 percent of dye pollutants in wastewater

New wood-based technology removes 80% of dye pollutants in wastewater

March 23, 2023

Copper artifacts unearth new cultural connections in southern Africa

March 22, 2023

Research uncovers details about the mysterious author of early astronomy textbooks

March 22, 2023

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    64 shares
    Share 26 Tweet 16
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    42 shares
    Share 17 Tweet 11
  • Insular dwarfs and giants more likely to go extinct

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

UTSA researchers exploit vulnerabilities of smart device microphones and voice assistants

Pressure-based control enables tunable singlet fission materials for efficient photoconversion

New wood-based technology removes 80% of dye pollutants in wastewater

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In