• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Brainstem neurons control both behaviour and misbehaviour

Bioengineer by Bioengineer
October 29, 2020
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Samir Sadik-Ogli

A recent study at the University of Helsinki reveals how gene control mechanisms define the identity of developing neurons in the brainstem. The researchers also showed that a failure in differentiation of the brainstem neurons leads to behavioural abnormalities, including hyperactivity and attention deficit.

The mammalian brain is big, but the state of its activity is controlled by a much smaller number of neurons. Many of these are located in the brainstem, an evolutionarily conserved part of the brain, which controls mood, motivation and motor activity. What are the brainstem neurons like? How do they develop in the embryonic brain? How are defects in their development reflected in brain activity and behaviour?

The research group, led by Professor Juha Partanen at the Faculty of Biological and Environmental Sciences, University of Helsinki, has addressed these questions by studying gene regulation in the embryonic brainstem.

The phenotype of a neuron, to a large extent, is determined already early in an embryo. We have shown how certain selector genes, which are expressed soon after the onset of neuronal differentiation, and control the activity of other neuron specific genes, determine the identity of the developing neuron.

The past few years have provided us with very powerful tools to study gene expression in individual cells. By analysing gene products in embryonic brain cells, we can now follow the differentiation paths of neurons and examine what exactly happens when the developing cells take different paths – for example in becoming a neuron either inhibiting or activating its target. Differentiation paths branch to produce the remarkable neuronal diversity that brain function is based on. According to the gene-expression-based identities, the immature neurons find their location in the brain and make contacts with other components of the neural circuitry.

What if the gene expression signposts point in wrong directions and the developing neurons are misrouted? In the brainstem, this has grave consequences on both brain function and behaviour.

In such a situation, “We have studied mice with an imbalance in differentiation of neurons either activating or inhibiting the dopaminergic and serotonergic neurotransmitter systems. These mice are hyperactive and impulsive, they have changes in their reward sensing and learning. Their hyperactivity can be alleviated with drugs used to treat human attention and hyperactivity deficits,” as Partanen clarifies.

In sum, Partanen indicates that, “Despite active research, the developmental basis of many human behavioural disorders are still poorly understood. We do not know yet if the human counterparts of the neurons we studied are involved in these deficits. Nevertheless, from the perspective of behavioural regulation, this specific group of neurons is highly important and there is still lot to learn about them.”

###

Media Contact
Juha Partanen
[email protected]

Original Source

https://www.helsinki.fi/en/news/life-science-news/brainstem-neurons-control-both-behaviour-and-misbehaviour

Related Journal Article

http://dx.doi.org/10.1016/j.celrep.2020.108268

Tags: Medicine/Healthneurobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Birth Weight Linked to Maternal, Neonatal PFOS Levels

August 22, 2025
Chinese Neurosurgical Journal Highlights Rare Central Nervous System Tumor Study

Chinese Neurosurgical Journal Highlights Rare Central Nervous System Tumor Study

August 22, 2025

Protein Landscape Reveals Host Response in Emergency Patients

August 22, 2025

Exploring Cardiovascular Health Disparities Across Race and Gender in Medicare Fee-for-Service Populations

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Birth Weight Linked to Maternal, Neonatal PFOS Levels

β-Elemene’s Therapeutic Promise for Glioma, CNS Diseases

Wireless Contact Lenses: Enabling Eye-Machine Interaction Through Blink-Based Encoding

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.