• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Brain clock ticks differently in autism

Bioengineer by Bioengineer
February 13, 2019
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: RIKEN


The neural ‘time windows’ in certain small brain areas contribute to the complex cognitive symptoms of autism, new research suggests. In a brain imaging study of adults, the severity of autistic symptoms was linked to how long these brain areas stored information. The differences in neural timescales may underlie features of autism like hypersensitivity and could be useful as a future diagnostic tool.

Sensory areas of the brain that receive input from the eyes, skin and muscles usually have shorter processing periods compared with higher-order areas that integrate information and control memory and decision-making. The new study, published in the journal eLife on February 5, shows that this hierarchy of intrinsic neural timescales is disrupted in autism. Atypical information processing in the brain is thought to underlie the repetitive behaviors and socio-communicational difficulties seen across the spectrum of autistic neurodevelopmental disorders (ASD), but this is one of the first indications that small-scale temporal dynamics could have an outsized effect.

Magnetic resonance imaging of the brains of high-functioning male adults with autism were compared to those of people without autism. In the resting state, both groups showed the expected pattern of longer timescales in frontal brain areas linked to executive control, and shorter timescales in sensory and motor areas. “Shorter timescales mean higher sensitivity in a particular brain region, and we found the most sensitive neural responses in those individuals with the most severe autistic symptoms,” says lead author Takamitsu Watanabe of the RIKEN Center for Brain Science. One brain area that displayed the opposite pattern was the right caudate, where the neural timescale was longer than normal, particularly in individuals with more severe repetitive, restricted behaviors. These differences in brain activity were also found in separate scans of autistic and neurotypical children.

The team of Japanese and UK researchers think that structural changes in small parts of the brain link these local dynamics to ASD symptoms. They found changes in grey matter volume in the areas with atypical neural timescales. A greater density of neurons can contribute to recurrent, repetitive neural activity patterns, which underlie the longer and shorter timescales observed in the right caudate and bilateral sensory/visual cortices, respectively. “The neural timescale is a measure of how predictable the activity is in a given brain region. The shorter timescales we observed in the autistic individuals suggest their brains have trouble holding onto and processing sensory input for as long as neurotypical people,” says Watanabe. “This may explain one prominent feature of autism, the great weight given by the brain to local sensory information and the resulting perceptual hypersensitivity.”

###

Reference

Watanabe T, Rees G, Masuda N (2019) Atypical intrinsic neural timescale in autism. eLife. doi: 10.7554/eLife.42256.

Media Contact
adam phillips
[email protected]

Original Source

https://itaintmagic.riken.jp/hot-off-the-press/brain-clock-in-autism/

Related Journal Article

http://dx.doi.org/10.7554/eLife.42256

Tags: BiologyMemory/Cognitive ProcessesMental Healthneurobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Halotolerant Staphylococcus Boosts Rice Salinity Tolerance

October 30, 2025
HIV and Antiretrovirals Impact Diverse Gut Microbiomes

HIV and Antiretrovirals Impact Diverse Gut Microbiomes

October 30, 2025

ZmDapF1 Variation Boosts Maize Drought Resilience

October 30, 2025

Mapping the AP2/ERF Gene Family in Cinnamomum Camphora

October 30, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1291 shares
    Share 516 Tweet 322
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    201 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34
>

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Breakthrough Cancer Drug Demonstrates Remarkable Tumor-Fighting Power

Enhancing Communication in Autism Through Speech Devices

Halotolerant Staphylococcus Boosts Rice Salinity Tolerance

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.