• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Borrowing from robotics, scientists automate mapping of quantum systems

Bioengineer by Bioengineer
June 16, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Understanding the character of hardware errors helps stabilise the technology

IMAGE

Credit: University of Sydney

Scientists at the University of Sydney have adapted techniques from autonomous vehicles and robotics to efficiently assess the performance of quantum devices, an important process to help stabilise the emerging technologies.

The innovative approach has been shown experimentally to outperform simplistic characterisation of these environments by a factor of three, with a much higher result for more complex simulated environments.

“Using this approach, we can map the ‘noise’ causing performance variations across quantum devices at least three times as quickly as a brute-force approach,” said lead author Riddhi Gupta, a PhD student in the School of Physics. “Rapidly assessing the noise environment can help us improve the overall stability of quantum devices.”

The research has been published in Nature partner journal Quantum Information.

Quantum computing is still in its early stages of development yet promises to revolutionise technology by solving problems beyond the scope of classical computing.

One of the barriers to develop these systems to practical scale is overcoming the imperfections of hardware. The basic units of quantum technology – quantum bits, or qubits – are highly sensitive to disturbance from their environments, such as electromagnetic ‘noise’, and exhibit performance variations that reduce their usefulness.

Ms Gupta, also part of the ARC Centre of Excellence for Engineered Quantum Systems, has taken techniques from classical estimation used in robotics and adapted them to improve hardware performance. This is achieved through the efficient automation of processes that map both the environment of and performance variations across large quantum devices.

“Our idea was to adapt algorithms used in robotics that map the environment and place an object relative to other objects in their estimated terrain,” she said. “We effectively use some qubits in the device as sensors to help understand the classical terrain in which other qubits are processing information.”

In robotics, machines rely on simultaneous localisation and mapping, or SLAM, algorithms. Devices like robotic vacuum cleaners are continuously mapping their environments then estimating their location within that environment in order to move.

The difficulty with adapting SLAM algorithms to quantum systems is that if you measure, or characterise, the performance of a single qubit, you destroy its quantum information.

What Ms Gupta has done is develop an adaptive algorithm that measures the performance of one qubit and uses that information to estimate the capabilities of nearby qubits.

“We have called this ‘Noise Mapping for Quantum Architectures’. Rather than estimate the classical environment for each and every qubit, we are able to automate the process, reducing the number of measurements and qubits required, which speeds up the whole process,” Ms Gupta said.

Dr Cornelius Hempel, whose experimental team provided Ms Gupta with data from experiments on a one-dimensional string of trapped ions, said he was pleased to see a threefold improvement even in the mapping of such a small quantum system.

“However, when Riddhi modelled this process in a larger and more complex system, the improvement in speed was as high as twentyfold. This is a great result given the future of quantum processing is in larger devices,” he said.

Ms Gupta’s supervisor is Professor Michael J. Biercuk, founder of quantum technology company Q-CTRL and director of the University of Sydney Quantum Control Laboratory.

He said: “This work is an exciting demonstration that state-of-the-art knowledge in robotics can directly shape the future of quantum computing. This was a first step to unify concepts from these two fields, and we see a very bright future for the continued development of quantum control engineering.”

###

DOWNLOAD the research and photos at this link.

INTERVIEWS

Ms Riddhi Gupta | [email protected]

School of Physics, The University of Sydney

Professor Michael J. Biercuk | [email protected]

School of Physics, The University of Sydney

MEDIA ENQUIRIES

Marcus Strom | [email protected] | +61 423 982 485

DECLARATION

This work was partially supported by the ARC Centre of Excellence for Engineered Quantum Systems, the US Army Research Office and a grant from H. & A. Harley.

Media Contact
Marcus Strom
[email protected]

Original Source

https://www.sydney.edu.au/news-opinion/news/2020/06/16/borrowing-from-robotics-scientists-automate-characterisation-quantum-systems.html

Related Journal Article

http://dx.doi.org/10.1038/s41534-020-0286-0

Tags: Atomic PhysicsChemistry/Physics/Materials SciencesComputer ScienceHardwareMaterialsNanotechnology/MicromachinesTheory/Design
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Scientists Discover How Enzymes “Dance” During Their Work—and Why It Matters

October 4, 2025
Electron Donor–Acceptor Complexes Enable Asymmetric Photocatalysis

Electron Donor–Acceptor Complexes Enable Asymmetric Photocatalysis

October 4, 2025

AI Advances Enhance Sustainable Recycling of Livestock Waste

October 3, 2025

Crafting Yogurt Using Ants: A Scientific Innovation

October 3, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    93 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    89 shares
    Share 36 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    68 shares
    Share 27 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

PLK1 Inhibition Boosts Gemcitabine Apoptosis in Pancreatic Cancer

How Body Weight Shapes First Impressions

Breakthroughs in Pediatric Gastrointestinal Bleeding Diagnosis

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.