• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Boring to study slow earthquakes

Bioengineer by Bioengineer
September 6, 2025
in Chemistry
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Data from boreholes in plate boundaries could explain slow earthquakes

Slow earthquakes are long-period earthquakes that are not so dangerous alone, but are able to trigger more destructive earthquakes. Their origins lie in tectonic plate boundaries where one plate subsides below another. Though the causal mechanism is already known, there has been a lack of data to accurately model the life cycle of slow earthquakes. For the first time, researchers use deep-sea boreholes to gauge pressures far below the seafloor. They hope data from this and future observations can aid the understanding of earthquake evolution.

The surface of the Earth lies upon gargantuan tectonic plates. The edges of these interact in different ways depending on the plates’ relative movement, composition and density. Where plates collide and one sinks below another is known as a subduction zone, often the site of what are known as slow earthquakes. These are low-frequency earthquakes which release their energy over longer periods — hours to months — than the earthquakes we might feel shaking the ground beneath us, which can last seconds to minutes.

It is important to understand slow earthquakes as, although not especially dangerous by themselves, they can cause larger short-period earthquakes, which can be extremely dangerous. Researchers believe that the variation of pressure between water-permeable regions at a subduction zone is the cause of slow earthquakes. They expected that excessive pressures beyond those the types of rock at those boundaries can withstand, might be responsible. At last, hard data on these high-pressure conditions has been collected on a recent Integrated Ocean Drilling Program (IODP) expedition, which included researchers from the University of Tokyo’s Earthquake Research Institute.

“We believe the subduction fault zone is much weaker than the surrounding rock, and that this can lead to the fault zones slipping, which could trigger earthquakes,” said Professor Masa Kinoshita of the Earthquake Research Institute. “High fluid pressure within the water-permeable rocky faults, called ocean aquifers, is one cause for this weakness. Our expedition to the Nankai Trough, a few hundred kilometers south of Osaka, included boring down to measure temperatures and pressures along the fault line.”

Typical, or “hydrostatic,” pressures below the seafloor in this region are around 60 megapascals — that’s approximately the pressure you’d feel if you lay down flat and someone dropped 200 Empire State Buildings on you. The researchers’ borehole samples revealed pressures around 5 megapascals to 10 megapascals greater than this in the vicinity of the fault zone itself. The chosen area was ideal for making these kinds of observations. The team had prior knowledge that there were high-temperature gradients which would likely correlate with the variations in pressure they hoped to discover. The team also included microbiologists who aimed to uncover unseen microbial life in these previously unexplored regions.

“Although we acquired some very useful data, and the first of its kind, the pressure readings had to be inferred, and in future we wish to have in situ observation stations in place which can relay pressure and temperature data without the need for a ship,” said Kinoshita. “We now propose another expedition, this time just west of Japan where there are frequent slow earthquakes. I have studied subsea heat flow since my graduate days. It’s exciting to see in reality what was only theoretical until very recently.”

###

Journal article

T. Hirose, Y. Hamada, W. Tanikawa, N. Kamiya, Y. Yamamoto, T. Tsuji, M. Kinoshita, V. B. Heuer, F. Inagaki, Y. Morono, and Y. Kubo, “High Fluid-Pressure Patches beneath the Décollement: A Potential Source of Slow Earthquakes in the Nankai Trough off Cape Muroto” Journal of Geophysical Research

Funding

This work was partly supported by the Japan Society for the Promotion of Science KAKENHI Grant Numbers JP19H02006, JP19K21907, 17H06455, and JP16H06476, by the Scientific Research on Innovative Areas “Science of Slow Earthquakes”, and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC-2077 -390741603.

Earthquake Research Institute – https://www.eri.u-tokyo.ac.jp/en/

Research contact information

Professor Masa Kinoshita

Earthquake Research Institute, The University of Tokyo,

1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan

Email: [email protected]

Press Contact

Mr. Rohan Mehra

Division for Strategic Public Relations, The University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, JAPAN

Email: [email protected]

About the University of Tokyo

The University of Tokyo is Japan’s leading university and one of the world’s top research universities. The vast research output of some 6,000 researchers is published in the world’s top journals across the arts and sciences. Our vibrant student body of around 15,000 undergraduate and 15,000 graduate students includes over 4,000 international students. Find out more at http://www.u-tokyo.ac.jp/en/ or follow us on Twitter at @UTokyo_News_en.

Media Contact
Professor Masa Kinoshita
[email protected]

Original Source

https://www.u-tokyo.ac.jp/focus/en/press/z0508_00183.html

Related Journal Article

http://dx.doi.org/10.1029/2021JB021831

Tags: Earth ScienceGeophysics/GravityHydrology/Water ResourcesPlate Tectonics
Share12Tweet8Share2ShareShareShare2

Related Posts

Surprisingly Elevated Levels of Forever Chemicals Discovered in Deceased Sea Otters

Surprisingly Elevated Levels of Forever Chemicals Discovered in Deceased Sea Otters

November 4, 2025
Next-Generation Satellite Mega-Constellations Empowered by Advanced Laser Links

Next-Generation Satellite Mega-Constellations Empowered by Advanced Laser Links

November 3, 2025

Breakthrough “Self-Tuning” Film Sets Stage for Next-Generation Wireless and Radar Technologies

November 3, 2025

From Shielding to Speed: Scientists Reveal Hidden Chemistry Powering Record-Breaking Sodium-Chlorine Batteries

November 3, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1297 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Insights into Drug-Facilitated Sexual Assault Cases

Pest Dynamics and Climate: Sustainable Solutions for Kagera Sugar

Globalizing Vignette Learning with Language Models

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.