• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Bone marrow concentrate improves joint transplants

Bioengineer by Bioengineer
September 25, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Justin Kelley, University of Missouri Health

Biologic joint restoration using donor tissue instead of traditional metal and plastic may be an option for active patients with joint defects. Although recovery from a biologic joint repair is typically longer than traditional replacement, successful biologic restoration allows patients to return to full activity. However, in some cases, the transplanted bone does not heal correctly. Researchers at the University of Missouri School of Medicine found in a group of patients that treating donor grafts with bone marrow aspirate concentrate (BMC) before surgery improves bone integration and speeds recovery.

"Surgeons performing biologic joint restoration surgeries typically only wash the donor bone to remove the marrow as a pretreatment before implanting the graft," said James Cook, D.V.M., Ph.D., O.T.S.C., the William and Kathryn Allen Distinguished Chair in Orthopaedic Surgery at the MU School of Medicine. "Once implanted, the recipient's bone has to grow into the donor bone for the surgery to be successful. This graft integration involves a long process called 'creeping substitution' that can take more than a year to complete. The first six months are the most critical for success, so we have been studying ways to make this process better and faster."

Cook's team compared 17 biologic knee joint grafts implanted without BMC to 29 grafts pretreated with BMC. Post-surgical X-ray images at six weeks, three months and six months were compared for graft integration and healing.

The grafts pretreated with BMC achieved 43 percent bone integration at six weeks, compared to 25 percent of those not treated. Likewise, at three months, pretreated grafts achieved 67 percent integration, compared to 50 percent of the untreated grafts. At six months, the researchers observed that the pretreated grafts were more than 84 percent fully integrated, compared to 74 percent of untreated grafts.

Cook, who also serves as director of operations and research at MU Health Care's Mizzou BioJointSM Center and director of the Thompson Laboratory for Regenerative Orthopaedics, led a pre-clinical study earlier in 2017 that showed BMC provides cells to infiltrate the donor bone and release proteins important to bone healing. In this current study, the researchers reviewed biologic knee replacement outcomes related to BMC use in humans.

"To pretreat a graft with BMC, the patient's bone marrow is collected at the start of the procedure," Cook said. "It is processed in the operating room using a centrifuge to make a powerful concentrate containing the patient's cells and proteins. The resulting BMC is used to saturate the donor bone before it is implanted into the patient's joint."

"The use of BMC is approved by the Food and Drug Administration for bone healing therapies," Cook said. "It has not been used specifically for biologic joint restoration procedures. I believe this is the first clinical study to directly examine the effects of BMC on bone integration for biologic joint restoration surgeries. Our data show that donor grafts pretreated with BMC were associated with earlier and better bone integration. This means that pretreatment with BMC reduces the risk of bone graft failure and improves the patients' chances for long term success."

Biologic joint replacement cost varies based on factors such as the extent of repair needed. More extensive repairs can exceed $100,000. BMC cost can exceed $1,000. Most health insurance policies cover the procedure.

Although the results are favorable, Cook noted the study has limitations, including the size of the patient sample studied.

"Moving forward, we will verify that similar results can be obtained in a larger patient population," Cook said. "We also want to see if the same positive outcomes can be achieved in other joints, such as hips, shoulders and ankles. However, based on the results of our two studies, we now pretreat all our biologic joint restoration grafts with BMC."

###

The study, "Effects of Autogenous Bone Marrow Aspirate Concentrate on Radiographic Integration of Femoral Condylar Osteochondral Allografts," recently was published in The American Journal of Sports Medicine. Funding for the study was provided by the MU Thompson Laboratory for Regenerative Orthopaedics, the MU Department of Orthopaedic Surgery and the Missouri Orthopaedic Institute.

Cook is a paid consultant and receives royalties from Arthrex Inc., a global medical device company that manufactures the needles and kits used for extracting and processing BMC.

About the MU School of Medicine

The MU School of Medicine has improved health, education and research in Missouri and beyond for more than 165 years. MU physicians treat patients from every county in the state, and more Missouri physicians received their medical degrees from MU than from any other university. For more information, visit http://medicine.missouri.edu/.

Media Contact

Jeffrey Hoelscher
[email protected]
573-884-1608
@mizzounews

http://www.missouri.edu

Original Source

https://medicine.missouri.edu/2017/09/study-shows-treating-cartilage-grafts-before-biologic-joint-replacement-speeds-healing/ http://dx.doi.org/10.1177/0363546517715725

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Superinfection Drives Defective HIV-1 Diversity, Replication

October 3, 2025

Iridoid Cyclase Discovery Completes Asterid Pathway

October 3, 2025

Genome Sequencing Uncovers Population Divergence in Yaks

October 3, 2025

AI Uncovers Antimicrobial Peptides Fighting Superbugs

October 3, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    92 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    87 shares
    Share 35 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

MRI Radiomics Predicts Pituitary Tumor Consistency

Multi-Domain O-GlcNAcase Unveils Allosteric Mechanisms

Urbanization Alters Oak Tree Microbiome Composition

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 61 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.