• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Bombardier vs. assassin: Mimetic interactions via a shared enemy

Bioengineer by Bioengineer
June 6, 2023
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Animals can defend themselves against their natural enemies in various ways. Well-defended species often share conspicuous body colors with other well-defended or undefended species, forming mimetic interactions. Bombardier beetles eject toxic chemicals at a temperature of 100°C to repel enemies such as frogs, and many have warning body colors that function to deter enemies. An assassin bug, Sirthenea flavipes, exhibits a conspicuous body color similar to the bombardier beetle Pheropsophus occipitalis jessoensis which coexist with the assassin bug in the same habitat in Japan (Fig. 1). The assassin bug can stab with its proboscis, causing severe pain in humans. Although both insects are well defended, the mimetic interaction between the bombardier beetle and the assassin bug remains unclear.

A bombardier beetle and an assassin bug.

Credit: Shinji Sugiura

Animals can defend themselves against their natural enemies in various ways. Well-defended species often share conspicuous body colors with other well-defended or undefended species, forming mimetic interactions. Bombardier beetles eject toxic chemicals at a temperature of 100°C to repel enemies such as frogs, and many have warning body colors that function to deter enemies. An assassin bug, Sirthenea flavipes, exhibits a conspicuous body color similar to the bombardier beetle Pheropsophus occipitalis jessoensis which coexist with the assassin bug in the same habitat in Japan (Fig. 1). The assassin bug can stab with its proboscis, causing severe pain in humans. Although both insects are well defended, the mimetic interaction between the bombardier beetle and the assassin bug remains unclear.

Japanese entomologists Shinji Sugiura (Kobe University) and Masakazu Hayashi (Hoshizaki Green Foundation) found that the bombardier beetle P. occipitalis jessoensis has a stronger defense against a shared predator compared to the assassin bug S. flavipes. They also showed that both the bombardier beetle and the assassin bug benefit from the mimetic interaction via the shared predator. Their research appears in the 6 June 2023 issue of PeerJ.

In central Japan, the pond frog Pelophylax nigromaculatus coexists with the bombardier beetle and the assassin bug in the same habitat. The pond frog, which is well known as a predator of various insects, could potentially attack the bombardier beetle and the assassin bug under field conditions. The researchers observed the behavioral response of pond frogs to bombardier beetles and assassin bugs under laboratory conditions (see video). Among the frogs, 100% rejected bombardier beetles and 75% rejected assassin bugs (Fig. 2), suggesting that the bombardier beetle is better defended against frogs than the assassin bug. The researchers also provided a bombardier beetle or an assassin bug to a frog that had encountered the other insect. Frogs that had previously encountered one insect species were less likely to attack the other species (Fig. 3). Specifically, a history of encounter with assassin bugs reduced the rate of attack on bombardier beetles by frogs from 75.0% to 21.7% (Fig. 3). A history of encounter with bombardier beetles reduced the rate of attack on assassin bugs by frogs from 91.3% to 40.0% (Fig. 3). Therefore, the mimetic interaction between the bombardier beetle and the assassin bug may be mutualistic.

Video:
https://youtu.be/BZ75K6rfvdE
Credit: Shinji Sugiura

Journal article:
Sugiura, S. & Hayashi, M. (2023) Bombardiers and assassins: mimetic interactions between unequally defended insects. PeerJ (https://doi.org/10.7717/peerj.15380)



Journal

PeerJ

DOI

10.7717/peerj.15380

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Bombardiers and assassins: mimetic interactions between unequally defended insects.

Article Publication Date

6-Jun-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Kombucha’s Pharmaceutical Potential: Production, Patents, Challenges

August 10, 2025
blank

Surfactants and Oils Shape Emulsion Ripening Rates

August 10, 2025

Mulberry Vinegar Fights Cognitive Decline via NF-κB

August 9, 2025

Scientists Discover Novel Mechanism Behind Cellular Tolerance to Anticancer Drugs

August 9, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    138 shares
    Share 55 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    77 shares
    Share 31 Tweet 19
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    56 shares
    Share 22 Tweet 14
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Reviving Spent LiFePO4 with Multifunctional Organic Lithium Salt

Key Biophysical Rules for Mini-Protein Endosomal Escape

Uranium Complex Converts Dinitrogen to Ammonia Catalytically

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.