• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Body’s natural signal carriers can help melanoma spread

Bioengineer by Bioengineer
January 16, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Kirsi Rilla


A new study from Finland sheds fresh light on how melanoma cells interact with other cells via extracellular vesicles they secrete. The researchers found that extracellular vesicles secreted by melanoma cells use the so-called hedgehog signalling pathway to intensify the malignant properties of the cells they are targeting. The discovery can help in the development of better treatment and diagnostics for melanoma. Published in Cellular and Molecular Life Sciences, the study was carried out in collaboration between researchers from the University of Eastern Finland and the University of Helsinki.

Many of the mechanisms regulating the function of our body have remained unchanged throughout evolution. This means that the same genes regulate the development and function of all multicellular animals. One example of such gene survival is the so-called hedgehog signalling pathway. The gene family associated with this signalling pathway gets its unique name from a mutation it caused in fruit fly larvae, making them look spiky, just like a hedgehog. The most common of the three hedgehog genes found in mammals, the Sonic hedgehog gene, was aptly named after the famous video game character. In mammals, members of the hedgehog gene family are essential regulators of foetal development, but they are also associated with stem cell division in later stages of development and even in adults. Recent studies suggest that their expression is also associated with many different types of cancer, including skin cancers. Melanoma is the most severe form of skin cancer, and it is becoming more and more common.

Extracellular vesicles carry signals between cells – and they can also carry packaged drugs

Traditionally, signalling in the body is thought to take place via freely circulating signals, such growth factors and hormones. According to a more recent view, however, it is believed that some signals are packaged for transportation to protect them against breakage and to ensure their delivery to the correct address. Extracellular vesicles are small, bubble-like packages made of cell membrane, serving as natural carriers of signals in the body. They regulate the function of the body already during the foetal stage, via breast milk and also later in life as our tissue regenerates. Cancer cells, too, use extracellular vesicles to deliver signals and to modify their environment, making it favourable to growth. Extracellular vesicles can also be used as diverse carriers of drugs to combat diseases and to repair tissue damage – and this is why they are being studied so actively at the moment.

In the newly published study, the researchers discovered a new link between extracellular vesicles and hedgehog molecules. They found that vesicles secreted by melanoma cells intensify the malignant properties of the cells they are targeting, such as division and spreading, via the hedgehog signalling pathway. The researchers used cultured human melanoma cells and normal skin cells, confirming their findings from the cell culture by analysing tissue samples from patients with melanoma.

“It is quite a coincidence that these signal-carrying vesicles originate from cells that are also known as hedgehog cells due to their microscopically small, spike-like protrusions. These protrusions, however, don’t have anything to do with fruit fly larvae; instead, they are typically found in cells that are active in producing hyaluronan, the most common sugar molecule in the extracellular matrix,” Docent Kirsi Rilla from the University of Eastern Finland says.

“Hyaluronan also plays a key role in vesicle mediated signalling, as hyaluronan found on the surface of vesicles protruding from the cell surface facilitates their binding to the target cell.”

The hedgehog signalling pathway holds great promise as a target for drug therapy in melanoma and other cancers. The regulation mechanism now discovered by the researchers can be made use of in the development of better diagnostics and drug therapy for patients with melanoma.

Docent Rilla’s research group has been studying the biology of extracellular vesicles since 2013.

###

For further information, please contact:

Docent Kirsi Rilla, University of Eastern Finland, tel. +358 40 3553218, [email protected]

Research article:

Arasu, U.T., Deen, A.J., Pasonen-Seppänen, S. et al. HAS3-induced extracellular vesicles from melanoma cells stimulate IHH mediated c-Myc upregulation via the hedgehog signaling pathway in target cells. Cell. Mol. Life Sci. (2019) doi:10.1007/s00018-019-03399-5

Media Contact
Kirsi Rilla
[email protected]
358-403-553-218

Related Journal Article

http://dx.doi.org/10.1007/s00018-019-03399-5

Tags: cancerMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Lysine Restriction Reduces Obesity via Gut Microbe

November 12, 2025

CryoEM Reveals NBCn1 pH Regulation Mechanism

November 12, 2025

Disrupted cAMP–PKA–CREB1 Signals Fuel Muscle Mitochondria Damage in Cancer

November 12, 2025

Reevaluating Proteinuria as a Key Endpoint in IgA Nephropathy

November 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    317 shares
    Share 127 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    209 shares
    Share 84 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    140 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1305 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

CT Radiomics Predicts Lung Cancer Invasion

Lysine Restriction Reduces Obesity via Gut Microbe

Optimizing Solid Oxide Fuel Cells with Evolutionary Algorithms

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.