• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Blood runs deep: Lab blood vessel model sheds light on angiogenesis

Bioengineer by Bioengineer
January 31, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: 2019 Yukiko Matsunaga, Institute of Industrial Science, The University of Tokyo


Tokyo, Japan – To provide sufficient oxygen to tissues and organs within the body, blood vessels need to sprout new offshoots to form a widespread blood supply network, much like the trunk, branches, and twigs of a tree. However, the mechanisms by which this sprouting occurs, in both normal healthy conditions and in conditions like cancer, have remained unclear.

To shed light on this issue, Prof. Yukiko T. Matsunaga’s research group based at The University of Tokyo working in collaboration within the international SMMiL-E project with the team of Dr. Fabrice Soncin at CNRS in Lille, France, used a model of a blood vessel created in the lab to study how a molecule called EGFL7 is involved in blood vessel sprouting and integrity. This new study, reported in the journal Biomaterials, reveals much about the formation of new blood vessels, a process known as angiogenesis, and suggests EGFL7 as a good target for treating diseases in which this process plays a key role.

Such research on angiogenesis is important in a clinical context. For example, when solid tumors form, they need to promote angiogenesis to obtain an adequate blood supply in order to keep growing. Reduced integrity of blood vessels is also an issue in various diseases, such as diabetic retinopathy, in which vessels in the retina are excessively leaky and their network structure gradually deteriorates. This background prompted the teams to use their model, called a microvessel-on-a-chip, to understand angiogenesis better.

“We obtained more insight into how blood vessels form by building our own in the lab from scratch, first forming a collagen mold containing a needle that was then removed, leaving a space that was then colonized by human umbilical vein endothelial cells,” corresponding author Yukiko T. Matsunaga says. “We next examined the effects of EGFL7 by comparing two models of this type, one in which this molecule was allowed to function normally in these cells and another in which it was knocked down by siRNA.”

The teams showed that an absence of EGFL7 reduced the sprouting of new blood vessels in the microvessel-on-a-chip in a manner dependent on the molecule VEGF-A. It also led to excessive production of filopodia, which are long slender structures at which new blood vessels normally emerge. Additionally, they showed that the barrier normally formed by the endothelial cells was impaired, resulting in leakage from the vessels.

“These new findings about the importance of EGFL7 could lead to effective therapies for diseases like retinopathy and cancer,” lead author Ryo Usuba says. “Our work also shows the advantages of using the microvessel-on-a-chip, both for basic research on the vasculature and in pursuit of other targets of treatment for various vascular disorders.”

###

The article “EGFL7 regulates sprouting angiogenesis and endothelial integrity in a human blood vessel model” is published in Biomaterials at doi: 10.1016/j.biomaterials.2019.01.022.

About Institute of Industrial Science (IIS), the University of Tokyo

Institute of Industrial Science (IIS), the University of Tokyo is one of the largest university-attached research institutes in Japan.

More than 120 research laboratories, each headed by a faculty member, comprise IIS, with more than 1,000 members including approximately 300 staff and 700 students actively engaged in education and research. Our activities cover almost all the areas of engineering disciplines. Since its foundation in 1949, IIS has worked to bridge the huge gaps that exist between academic disciplines and real-world applications.

Media Contact
Yukiko Matsunaga
[email protected]
81-354-526-470

Original Source

https://www.iis.u-tokyo.ac.jp/en/news/3040/

Related Journal Article

http://dx.doi.org/10.1016/j.biomaterials.2019.01.022

Tags: BiochemistryBiologyBiomechanics/BiophysicsBiotechnologycancerCardiologyDiabetesMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Karel Svoboda and Jay Shendure Elected to National Academy of Medicine

October 20, 2025
Breakthrough Molecular Map Uncovers Cellular Control of Nucleus-Cytoplasm Traffic

Breakthrough Molecular Map Uncovers Cellular Control of Nucleus-Cytoplasm Traffic

October 20, 2025

Belgian Scientists Uncover Cellular Mechanisms Shielding Skin from Inflammatory Diseases, Opening Doors to Novel Therapies

October 20, 2025

Ultra-Endurance Athletes Push the Boundaries of Human Metabolic Capacity

October 20, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1267 shares
    Share 506 Tweet 316
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    300 shares
    Share 120 Tweet 75
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    128 shares
    Share 51 Tweet 32
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    103 shares
    Share 41 Tweet 26

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Blood Test Advances Personalized Immunotherapy for Muscle-Invasive Bladder Cancer After Surgery

Unraveling Apolipoprotein A-IV in Cardiac Amyloidosis

Karel Svoboda and Jay Shendure Elected to National Academy of Medicine

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.