• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, July 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Blood runs deep: Lab blood vessel model sheds light on angiogenesis

Bioengineer by Bioengineer
January 31, 2019
in Biology
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: 2019 Yukiko Matsunaga, Institute of Industrial Science, The University of Tokyo


Tokyo, Japan – To provide sufficient oxygen to tissues and organs within the body, blood vessels need to sprout new offshoots to form a widespread blood supply network, much like the trunk, branches, and twigs of a tree. However, the mechanisms by which this sprouting occurs, in both normal healthy conditions and in conditions like cancer, have remained unclear.

To shed light on this issue, Prof. Yukiko T. Matsunaga’s research group based at The University of Tokyo working in collaboration within the international SMMiL-E project with the team of Dr. Fabrice Soncin at CNRS in Lille, France, used a model of a blood vessel created in the lab to study how a molecule called EGFL7 is involved in blood vessel sprouting and integrity. This new study, reported in the journal Biomaterials, reveals much about the formation of new blood vessels, a process known as angiogenesis, and suggests EGFL7 as a good target for treating diseases in which this process plays a key role.

Such research on angiogenesis is important in a clinical context. For example, when solid tumors form, they need to promote angiogenesis to obtain an adequate blood supply in order to keep growing. Reduced integrity of blood vessels is also an issue in various diseases, such as diabetic retinopathy, in which vessels in the retina are excessively leaky and their network structure gradually deteriorates. This background prompted the teams to use their model, called a microvessel-on-a-chip, to understand angiogenesis better.

“We obtained more insight into how blood vessels form by building our own in the lab from scratch, first forming a collagen mold containing a needle that was then removed, leaving a space that was then colonized by human umbilical vein endothelial cells,” corresponding author Yukiko T. Matsunaga says. “We next examined the effects of EGFL7 by comparing two models of this type, one in which this molecule was allowed to function normally in these cells and another in which it was knocked down by siRNA.”

The teams showed that an absence of EGFL7 reduced the sprouting of new blood vessels in the microvessel-on-a-chip in a manner dependent on the molecule VEGF-A. It also led to excessive production of filopodia, which are long slender structures at which new blood vessels normally emerge. Additionally, they showed that the barrier normally formed by the endothelial cells was impaired, resulting in leakage from the vessels.

“These new findings about the importance of EGFL7 could lead to effective therapies for diseases like retinopathy and cancer,” lead author Ryo Usuba says. “Our work also shows the advantages of using the microvessel-on-a-chip, both for basic research on the vasculature and in pursuit of other targets of treatment for various vascular disorders.”

###

The article “EGFL7 regulates sprouting angiogenesis and endothelial integrity in a human blood vessel model” is published in Biomaterials at doi: 10.1016/j.biomaterials.2019.01.022.

About Institute of Industrial Science (IIS), the University of Tokyo

Institute of Industrial Science (IIS), the University of Tokyo is one of the largest university-attached research institutes in Japan.

More than 120 research laboratories, each headed by a faculty member, comprise IIS, with more than 1,000 members including approximately 300 staff and 700 students actively engaged in education and research. Our activities cover almost all the areas of engineering disciplines. Since its foundation in 1949, IIS has worked to bridge the huge gaps that exist between academic disciplines and real-world applications.

Media Contact
Yukiko Matsunaga
[email protected]
81-354-526-470

Original Source

https://www.iis.u-tokyo.ac.jp/en/news/3040/

Related Journal Article

http://dx.doi.org/10.1016/j.biomaterials.2019.01.022

Tags: BiochemistryBiologyBiomechanics/BiophysicsBiotechnologycancerCardiologyDiabetesMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

July 20, 2025
blank

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

July 17, 2025

Mobile Gene Regulator Balances Arabidopsis Shoot-Root Growth

July 16, 2025

Mobile Transcription Factor Drives Nitrogen Deficiency Response

July 16, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    62 shares
    Share 25 Tweet 16
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    70 shares
    Share 28 Tweet 18
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    43 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.