• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Blood pressure drug shows promise for treating Parkinson’s and dementia in animal study

Bioengineer by Bioengineer
April 18, 2019
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A prescribed drug to treat high blood pressure has shown promise against conditions such as Parkinson’s, Huntington’s and forms of dementia in studies carried out in mice and zebrafish at the University of Cambridge.

A common feature of these diseases – collectively known as neurodegenerative diseases – is the build-up of misfolded proteins. These proteins, such as huntingtin in Huntington’s disease and tau in some dementias, form ‘aggregates’ that can cause irreversible damage to nerve cells in the brain.

In healthy individuals, the body uses a mechanism to prevent the build-up of such toxic materials. This mechanism is known as autophagy, or ‘self-eating’, and involves ‘Pac-Man’-like cells eating and breaking down the materials. However, in neurodegenerative diseases this mechanism is impaired and unable to clear the proteins building up in the brain.

As the global population ages, an increasing number of people are being diagnosed with neurodegenerative diseases, making the search for effective drugs ever more urgent. However, there are currently no drugs that can induce autophagy effectively in patients.

In addition to searching for new drugs, scientists often look to re-purpose existing drugs. These have the advantage that they have already been shown to be safe for use in humans. If they can be shown to be effective against the target diseases, then the journey to clinical use is much faster.

In a study published today in the journal Nature Communications, scientists at the UK Dementia Research Institute and the Cambridge Institute for Medical Research at the University of Cambridge have shown in mice that felodipine, a hypertension drug, may be a candidate for re-purposing.

Epidemiological studies have already hinted at a possible link between the drug and reduced risk of Parkinson’s disease, but now the researchers have shown that it may be able to induce autophagy in several neurodegenerative conditions.

A team led by Professor David Rubinsztein used mice that had been genetically modified to express mutations that cause Huntington’s disease or a form of Parkinson’s disease, and zebrafish that model a form of dementia.

Mice are a useful model for studying human disease as their short life span and fast reproductive rate make it possible to investigate biological processes in many areas. Their biology and physiology have a number of important characteristics in common with those of humans, including similar nervous systems.

Felodipine was effective at reducing the build-up of aggregates in the mice with the Huntington’s and Parkinson’s disease mutations and in the zebrafish dementia model. The treated animals also showed fewer signs of the diseases.

Studies in mice often use doses that are much higher than those known to be safe to use in humans. Professor Rubinsztein and colleagues showed in the Parkinson’s mice that it is possible to show beneficial effects even at concentrations similar to those tolerated by humans. They did so by controlling the concentrations using a small pump under the mouse’s skin.

“This is the first time that we’re aware of that a study has shown that an approved drug can slow the build-up of harmful proteins in the brains of mice using doses aiming to mimic the concentrations of the drug seen in humans,” says Professor Rubinsztein. “As a result, the drug was able to slow down progression of these potentially devastating conditions and so we believe it should be trialled in patients.”

“This is only the first stage, though. The drug will need to be tested in patients to see if it has the same effects in humans as it does in mice. We need to be cautious, but I would like to say we can be cautiously optimistic.”

###

The study was funded by Wellcome, the Medical Research Council, Alzheimer’s Research UK, the Alzheimer’s Society, Rosetrees Trust, The Tau Consortium, an anonymous donation to the Cambridge Centre for Parkinson-Plus, Open Targets, the Guangdong Province Science and Technology Program, with additional support from the National Institute for Health Research Cambridge Biomedical Research Centre.

Reference

Siddiqi, FH et al. Felodipine induces autophagy in mouse brains with pharmacokinetics amenable to repurposing. Nature Communications; 18 April 2019; DOI: 10.1038/s41467-019-09494-2

Media Contact
Craig Brierley
[email protected]
http://dx.doi.org/10.1038/s41467-019-09494-2

Tags: BiologyMedicine/HealthneurobiologyParkinson
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Pulp Mill Waste Transformed into Eco-Friendly Solution for Eliminating Toxic Dyes

September 27, 2025

Fluorogenic Probes Unveil Ferroptosis Onset, Progression

September 26, 2025

Cutting-Edge Adaptive Optics Boost Gravitational-Wave Discoveries

September 26, 2025

Jingyuan Xu of KIT Honored with “For Women in Science” Sponsorship Award

September 26, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    85 shares
    Share 34 Tweet 21
  • Physicists Develop Visible Time Crystal for the First Time

    73 shares
    Share 29 Tweet 18
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    56 shares
    Share 22 Tweet 14
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ezetimibe Reduces Long-term Cancer Risk: Nationwide Study

Genome Analysis Identifies Key Genes for Yak Size

New Simple Test Accurately Predicts Risk of Severe Liver Disease

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.