• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Birds of a feather flock together to keep their options open, say scientists

Bioengineer by Bioengineer
July 16, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Why did you choose your job? Or where you live? Scientists at the University of Warwick have discovered that it was probably to keep your options as open as possible – and the more we co-operate together, the more opportunities are available to us.

Credit: Henry J. Charlesworth and Matthew S. Turner

Why did you choose your job? Or where you live? Scientists at the University of Warwick have discovered that it was probably to keep your options as open as possible – and the more we co-operate together, the more opportunities are available to us.

Using flocks of birds as a model, they have shown that birds of a feather will indeed flock together to maximise the information they have access to and to give them the most future options when flocking.

The discovery by Henry Charlesworth and his supervisor Professor Matthew Turner published on 15 July in Proceedings of the National Academy of Sciences and provides a clue to the emergence of social co-operation in animals by explaining how individuals gain greater advantages by working in groups. The research was partially funded by the Engineering and Physical Sciences Research Council (EPSRC), part of UK Research and Innovation.

The researchers sought to gain a better understanding of collective motion, like that seen in a flock of birds, a herd of animals, an insect swarm or a human crowd.

They created a computer simulation, using bird flocks as a model, in which the ‘birds’ perceived a visual representation of the world around them, as if through a simple retina. They then programmed them with an algorithm based on the principle of Future State Maximisation (FSM), so the ‘birds’ would move to maximise the number of different visual environments that they expect to be able to access in the future.

The way they move together resembled animals in several ways, including cohesion (they stick together), co-alignment (they fly in roughly the same direction as their neighbours) and collision suppression, none of which were specifically programmed into the model. This demonstrates that there is a fundamental advantage to the ‘birds’ in working together.

Professor Matthew Turner, from the University of Warwick Department of Physics, said: “We adopted a hypothesis that birds are agents that want to maximise their future freedom, and then we asked what the consequences are of that. It looks like it generates dynamics that are extremely similar, even at the quantitative level, to a bird flock. That begs the question of whether this principle is actually the fundamental organisational principle in birds, and possibly in all intelligent life?

“We start from this low-level principle and are able to predict that these agents will move together, what density they will target, what kind of level of order they’ll target. All of these things look remarkably similar to what you get in animal systems.”

The algorithm is similar to ‘tree searches’ that have been used for a number of years in applications like chess programs. Chess algorithms would build tree searches of future lines of play and then select those lines that give them the maximum future options, among other factors.

The discovery has applications in a host of fields such as in robotics, drone swarms, farming and even CGI graphics, where creating realistic swarms is seen as a gold standard.

This latest research also suggests that this principle may be a fundamental tool for information processing agents and perhaps help to define intelligence itself.

Professor Turner adds: “People should ask themselves how they make decisions in their own lives – do they make decisions instinctively or are they trying to optimise something?

“This is a deep question in science, the emergence of social co-operation. We would argue that having a social organisation like a bird flock, because you’re all together and social, you collectively gain much more freedom than you would if you were an individual. If you are an individual you would live in a very boring world, you wouldn’t be able to interact with your neighbours, or in the context of our society, to request tasks or provide services.

“The idea is that this principle of keeping your options open might be connected to intelligence, and as quantitative scientists we can build a model that shows us what the consequences of that are.”

###

* ‘Intrinsically motivated collective motion’ published in PNAS, DOI: 10.1073/pnas.1822069116

Notes to editors:

Video animations showing Future State Maximisation available to download at: https://files.warwick.ac.uk/msturner/browse#Supplementary+Movies

To request a copy of paper contact [email protected]

Media Contact
Peter Thorley
[email protected]

Related Journal Article

http://dx.doi.org/10.1073/pnas.1822069116

Tags: BehaviorBiomechanics/BiophysicsChemistry/Physics/Materials SciencesSocial/Behavioral ScienceZoology/Veterinary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Cold-Fermentation and Industrial Use of Leuconostoc citreum

Cold-Fermentation and Industrial Use of Leuconostoc citreum

November 24, 2025
TOAST: Precision Primer Design for Tuberculosis Sequencing

TOAST: Precision Primer Design for Tuberculosis Sequencing

November 24, 2025

Plasmids and Genomic Islands Fuel ST-131 Resistance Evolution

November 23, 2025

Unlocking Drought Resistance in Perennial Ryegrass Genetics

November 23, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    202 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    93 shares
    Share 37 Tweet 23
  • Scientists Create Fast, Scalable In Planta Directed Evolution Platform

    97 shares
    Share 39 Tweet 24

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Fructose and Follistatin Worsen Acute MASLD

Youth Eating Disorders in Türkiye: Pre- and Post-COVID Insights

Surgical Skill Boosts Cervical Cancer Survival

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.