• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Bipolar order: A straightforward technique to have more control over organic thin films

Bioengineer by Bioengineer
May 18, 2021
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Tokyo Tech

Modern and emerging applications in various fields have found creative uses for organic thin films (TFs); some prominent examples include sensors, photovoltaic systems, transistors, and optoelectronics. However, the methods currently available for producing TFs, such as chemical vapor deposition, are expensive and time-consuming, and often require highly controlled conditions. As one would expect, making TFs with specific shapes or thickness distributions is even more challenging. Because unlocking this customizability could spur advances in many sophisticated applications, researchers are actively exploring new approaches for TF fabrication.

In a recent study published in Angewandte Chemie internatnal edition, a team of scientists from Tokyo Tech found a clever and straightforward strategy to produce organic TF patterns with a controllable shape and thickness. The research was led by Associate Professor Shinsuke Inagi, whose group has been delving into the potential of bipolar electrochemistry for polymeric TF fabrication. In this peculiar branch of electrochemistry, a conducting object is submerged in an electrolytic cell, and the electric field generated by the cell’s electrodes causes a potential difference to emerge across the surface of the object. This electric potential can be large enough to drive chemical reactions on the surface of the introduced (and now bipolar) object. Noting that the potential distribution on the bipolar object simultaneously depends on multiple factors, Prof. Inagi’s team had previously leveraged this technique to achieve a good degree of controllability in fabricated polymeric TFs.

Now, Yaqian Zhou, a Ph.D. candidate in Prof. Inagi’s team, combined bipolar electrochemistry with a unique strategy developed in the 1980s by Dr. Saji and colleagues, also from Tokyo Tech. This other method, called ‘electrolytic micelle disruption (EMD),’ basically consists in encapsulating an organic compound inside spherical structures called micelles, which are, like some soaps and detergents, composed of surfactant molecules. These surfactants molecules are special in that they tend to easily lose electrons when near a positively charged electrode; this destabilizes the micelles and releases the organic compounds trapped within, which then accumulate and form a film.

The team employed special bipolar electrochemical cells with different configurations to control the potential distribution induced wirelessly on a plate, creating, for example, a voltage gradient along a direction or a circular area with a positive potential zone. They then introduced micelles loaded with a desired organic compound. The catch is that these micelles “popped” more frequently on the more positively charged regions on the bipolar plate. Thus, as they released their cargo, the thin films that automatically formed closely resembled the induced voltage distribution, providing an interesting degree of customizability. “We managed to produce a variety of thickness-gradient and circular organic thin films in proof-of-concept experiments, which confirmed the validity of our proposed approach,” highlights Prof. Inagi.

This novel strategy is remarkably inexpensive and makes customizable thin films much more accessible. Moreover, as Prof. Inagi explains, the technique is not limited to organic molecules and could be made compatible with polymers and carbon materials. “We’ve developed a promising tool for various applications that rely on thin films, not just in the field of luminescence, but also for more sophisticated areas like biosensor systems, due to the organic solvent-free and mild conditions required,” he concludes. Hopefully, further improvements on this combined technique will help produce thin films that can satisfy all sorts of practical demands.

###

Media Contact
Kazuhide Hasegawa
[email protected]

Related Journal Article

http://dx.doi.org/10.1002/anie.202103233

Tags: Chemistry/Physics/Materials SciencesIndustrial Engineering/Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Tan Leads Investigation into Ferroelectric Oxides as Heterogeneous Photocatalysts for Ethane Dehydrogenation

August 12, 2025
blank

Revolutionary Research Unveils “Pore Science and Engineering” Paving the Way for Next-Generation Porous Materials

August 12, 2025

Kennesaw State Physics Professor Awarded Three-Year Grant to Develop Particle Collider Simulations

August 12, 2025

Common Food Thickeners Once Believed Indigestible Are Actually Broken Down in Our Bodies

August 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    78 shares
    Share 31 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionizing Kiln Packing: AI Solutions to Minimize Emissions

Van Andel Institute’s Dr. Nick Burton Honored as Pew Scholar in Biomedical Sciences

New Survey Reveals Most U.S. Women Are Uninformed by Healthcare Providers About Diet’s Role in Breast Cancer Prevention

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.