• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Biopolymer-coated nanocatalyst can help realize a hydrogen fuel-driven future

Bioengineer by Bioengineer
February 23, 2021
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists demonstrate enhanced hydrogen production from sunlight-assisted water splitting using a polydopamine-coated zinc sulfide nanorod catalyst

IMAGE

Credit: Incheon National University

To combat climate change, shifting from fossil fuels to clean and sustainable energy sources is imperative. A popular candidate in this regard is hydrogen, an eco-friendly fuel that produces only water when used. However, the efficient methods of hydrogen production are usually not eco-friendly. The eco-friendly alternative of splitting water with sunlight to produce hydrogen is inefficient and suffers from low stability of the photocatalyst (material that facilitates chemical reactions by absorbing light). How does one address the issue of developing a stable and efficient photocatalyst?

In a study recently published in Applied Catalysis B: Environmental, an international group of scientists, led by Assistant Professor Yeonho Kim from Incheon National University in Korea, addressed this question and reported on the performance of polydopamine (PDA)-coated zinc sulfide (ZnS) nanorods as a photocatalyst, which showed an increase in hydrogen production by 220% compared to ZnS catalyst alone! Moreover, it displayed decent stability, retaining almost 79% of its activity after being irradiated for 24 hours. Dr. Kim outlines the motivation behind their research, “ZnS has various photochemical applications because it can rapidly generate electric charge carriers under sunlight. However, sunlight also causes oxidation of sulfide ions leading to photocorrosion of ZnS. Recently, studies showed that controlled-thickness PDA coatings on a photocatalyst can improve conversion efficiency for solar energy and enhance photostability. But, so far, no study has addressed the physico-chemical changes at the interface of ZnS/PDA. Therefore, we wanted to study the effect of PDA binding on the photocatalytic performance of ZnS.”

The scientists fabricated the PDA-coated ZnS nanocatalysts through polymerization to coat dopamine onto ZnS nanorods, and varied the polymerization period to create samples of three different PDA thicknesses–1.2 nm (ZnS/PDA1), 2.1 nm (ZnS/PDA2), and 3.5 nm (ZnS/PDA3). They then measured the photocatalytic performance of these samples by monitoring their hydrogen production under simulated sunlight illumination.

The ZnS/PDA1 catalyst showed the highest hydrogen production rate followed by ZnS/PDA2, uncoated ZnS, and ZnS/PDA3. The team attributed the inferior performance of ZnS/PDA2 and ZnS/PDA3 to more light absorption by the thicker PDA coatings, which reduced the light reaching ZnS and impeded the excited charge carriers to reach the surface; uncoated ZnS, contrarily, underwent photocorrosion.

To understand the role of electronic structure in the observed enhancement, the scientists measured emission and extinction spectra of the samples along with density functional theory calculations. The former revealed that the enhanced absorption was due to Zn-O or O-Zn-S shells forming on ZnS and the creation of energy levels near the valence band (highest atomic level filled with electrons) that can accept “holes” (absence of electrons), while the calculations showed that ZnS/PDA has a unique “doubly staggered” electronic structure that facilitates the transport and separation of charge carriers at the surface. The improved durability was due to lowered oxidative capacity of holes in the valence states of PDA.

Dr. Kim and his team are hopeful of wider applications of their technique. “The polydopamine coating utilized in our work is also applicable to other groups of selenide, boride, and telluride-based catalysts,” comments Dr. Kim.

The future might indeed be hydrogen!

###

About Incheon National University

Incheon National University (INU) is a comprehensive, student-focused university. It was founded in 1979 and given university status in 1988. One of the largest universities in South Korea, it houses nearly 14,000 students and 500 faculty members. In 2010, INU merged with Incheon City College to expand capacity and open more curricula. With its commitment to academic excellence and an unrelenting devotion to innovative research, INU offers its students real-world internship experiences. INU not only focuses on studying and learning but also strives to provide a supportive environment for students to follow their passion, grow, and, as their slogan says, be INspired.

Website: http://www.inu.ac.kr/mbshome/mbs/inuengl/index.html

About the author

Dr. Yeonho Kim is an Assistant Professor of Research Institute of Basic Sciences at Incheon National University. His research group is developing environmentally-friendly (photo) catalysts of the nanoscale range and studying their reduction/oxidation mechanism during the photocatalytic reaction. His group aims to overcome challenges in present catalysts technologies using alternative oxidation half-reactions to drive the breakdown of waste polymers or chemicals into valuable organic products.

Media Contact
Yeonho Kim
[email protected]

Original Source

http://www.inu.ac.kr/user/boardList.do?command=view&page=1&boardId=555310&boardSeq=615055&id=inueng_050700000000&NewIpsi=&NewEng=&NewComm=&NewSugi=&categoryDepth=0005

Related Journal Article

http://dx.doi.org/10.1016/j.apcatb.2020.119423

Tags: Chemistry/Physics/Materials SciencesEnergy SourcesEnergy/Fuel (non-petroleum)Industrial Engineering/ChemistryResearch/Development
Share12Tweet8Share2ShareShareShare2

Related Posts

CT-P13 Infliximab Biosimilar: Safety and Effectiveness Unveiled

CT-P13 Infliximab Biosimilar: Safety and Effectiveness Unveiled

August 23, 2025
blank

Lactylation’s Impact on Lipid Metabolism and Diseases

August 23, 2025

Global Decarbonization Drives Unseasonal Land Changes

August 23, 2025

One Health Reveals Usutu, West Nile Virus Dynamics

August 23, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

CT-P13 Infliximab Biosimilar: Safety and Effectiveness Unveiled

Lactylation’s Impact on Lipid Metabolism and Diseases

Global Decarbonization Drives Unseasonal Land Changes

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.