• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, May 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Medical Technology

Biomaterial Coating for Better Medical Implants

Bioengineer by Bioengineer
January 30, 2015
in Medical Technology
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A novel, bacteria-repelling coating material that could increase the success of medical implants has been created by researchers.

The material helps healthy cells ‘win the race’ to the medical implant, beating off competition from bacterial cells and thus reducing the likelihood of the implant being rejected by the body.

The first results of the material’s performance have been published today, 30 January, in IOP Publishing’s journal Biomedical Materials.

The failure rate of certain medical implants still remains high—around 40% for hip implants—due to the formation of biofilms when the implant is first inserted into the body.

This thin film is composed of a group of microorganisms stuck together and can be initiated by bacteria sticking to the implant. This prevents healthy cells from attaching and results in the body eventually rejecting the implant, potentially leading to serious complications for patients.

In their study, researchers from A*STAR (Agency for Science, Technology and Research) in Singapore, Nanyang Technological University and City University of Hong Kong produced a material that not only repelled bacteria but also attracted healthy cells.

The base of the material was made from polyelectrolyte multilayers onto which a number of specific bonding molecules, called ligands, were attached.

After testing various concentrations of different ligands, the researchers found that RGD peptide was particularly effective at inhibiting the attachment of bacterial cells and attracting healthy cells, compared with collagen, when attached to dextran sulfate and chitosan multilayers.

This combination was tested on cultures of healthy fibroblast cells and cultures of bacterial cells, in which two specific strains were used—E. coli and S. aureus.

The lead author of the research, Professor Vincent Chan from Nanyang Technological University, said: “The method we developed helped the host cells win the so called ‘race-for-surface’ battle, forming a confluent layer on the implant surface which protects it from possible bacterial adhesion and colonization.

“Medical implants currently have antibacterial silver coatings incorporated into them; however, the total amount of silver used must be very carefully controlled because high concentrations could kill mammalian cells and become toxic to the human body.

“The bio-selective coatings we’ve created do not have this problem as the materials used are non-toxic and the preparation process uses water as a solvent.

“At the moment this is just a ‘proof-of-concept’ study, so there is still a long way to go before the coating can be used on implants in clinical setting. In future studies we hope to firstly improve the long-term stability of the coating.”

Story Source:

The above story is based on materials provided by IOP Publishing.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Designing better medical implants

May 18, 2015
blank

A Nano-transistor Assesses Your Health Via Sweat

May 16, 2015

Researchers develop custom artificial membranes to study the molecular basis of disease

May 8, 2015

Thermometer-like device could help diagnose heart attacks

May 7, 2015
Please login to join discussion

POPULAR NEWS

  • blank

    Volatile-Rich Cap Found Above Yellowstone Magma

    665 shares
    Share 266 Tweet 166
  • Natural Supplement Shows Potential to Slow Biological Aging and Enhance Muscle Strength

    89 shares
    Share 36 Tweet 22
  • Analysis of Research Grant Terminations at the National Institutes of Health

    78 shares
    Share 31 Tweet 20
  • The Rise of Eukaryotic Cells: An Evolutionary Algorithm Spurs a Major Biological Transition

    68 shares
    Share 27 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Matrix Metalloproteinase-10 Drives Kidney Fibrosis via β-Catenin

Obesity Drugs Aid Weight Loss After Bariatric Surgery

METTL13 Controls MYC, Drives Leukemia Cell Survival

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.