• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Medical Technology

Biomaterial Coating for Better Medical Implants

Bioengineer by Bioengineer
January 30, 2015
in Medical Technology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A novel, bacteria-repelling coating material that could increase the success of medical implants has been created by researchers.

The material helps healthy cells ‘win the race’ to the medical implant, beating off competition from bacterial cells and thus reducing the likelihood of the implant being rejected by the body.

The first results of the material’s performance have been published today, 30 January, in IOP Publishing’s journal Biomedical Materials.

The failure rate of certain medical implants still remains high—around 40% for hip implants—due to the formation of biofilms when the implant is first inserted into the body.

This thin film is composed of a group of microorganisms stuck together and can be initiated by bacteria sticking to the implant. This prevents healthy cells from attaching and results in the body eventually rejecting the implant, potentially leading to serious complications for patients.

In their study, researchers from A*STAR (Agency for Science, Technology and Research) in Singapore, Nanyang Technological University and City University of Hong Kong produced a material that not only repelled bacteria but also attracted healthy cells.

The base of the material was made from polyelectrolyte multilayers onto which a number of specific bonding molecules, called ligands, were attached.

After testing various concentrations of different ligands, the researchers found that RGD peptide was particularly effective at inhibiting the attachment of bacterial cells and attracting healthy cells, compared with collagen, when attached to dextran sulfate and chitosan multilayers.

This combination was tested on cultures of healthy fibroblast cells and cultures of bacterial cells, in which two specific strains were used—E. coli and S. aureus.

The lead author of the research, Professor Vincent Chan from Nanyang Technological University, said: “The method we developed helped the host cells win the so called ‘race-for-surface’ battle, forming a confluent layer on the implant surface which protects it from possible bacterial adhesion and colonization.

“Medical implants currently have antibacterial silver coatings incorporated into them; however, the total amount of silver used must be very carefully controlled because high concentrations could kill mammalian cells and become toxic to the human body.

“The bio-selective coatings we’ve created do not have this problem as the materials used are non-toxic and the preparation process uses water as a solvent.

“At the moment this is just a ‘proof-of-concept’ study, so there is still a long way to go before the coating can be used on implants in clinical setting. In future studies we hope to firstly improve the long-term stability of the coating.”

Story Source:

The above story is based on materials provided by IOP Publishing.

Share12Tweet8Share2ShareShareShare2

Related Posts

Designing better medical implants

May 18, 2015

A Nano-transistor Assesses Your Health Via Sweat

May 16, 2015

Researchers develop custom artificial membranes to study the molecular basis of disease

May 8, 2015

Thermometer-like device could help diagnose heart attacks

May 7, 2015
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    96 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    94 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    74 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    72 shares
    Share 29 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

While Scientists Acknowledge the Behavioral Impact of Chemicals, Industry Workers Show Hesitance Toward Safety Testing

Pelvic Dashboard Injuries After Hip Replacement Explored

Enhancing Cultural Empathy in Nursing via 3D Simulation

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.