• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Biologists untangle growth and defense in maize, define key antibiotic pathways

Bioengineer by Bioengineer
September 19, 2019
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers identify 6 genes responsible for the production of plant antibiotics known for critical disease resistance

IMAGE

Credit: Eric Schmelz, UC San Diego

In order to meet the demands of growing human populations, agricultural production must double within the next 30 years. Yet the health of today’s crops and the promise of their yield face a rising slate of threats–from pests to chaotic weather events–leading to an urgent need to identify effective, natural plant defense strategies.

Biologists have access to a wealth of genomic and biochemical data, but rapidly deciphering entire biochemical pathways that protect key crops of global significance remains a significant challenge. Scientists are peeling away at the layers of immunity in maize, a staple for diets around the world, to determine if there are key genes that enable surprisingly diverse antibiotic cocktails that can be produced as defensive blends against numerous disease agents.

Now, a systematic and combined approach to identifying such genes in crop defense has been developed by Yezhang Ding, Alisa Huffaker and Eric Schmelz of the University of California San Diego and their colleagues and is described in Nature Plants.

“We need to know which crop defense mechanisms are effective and what we can do sustain or further improve them,” said Schmelz. “Coauthors and collaborators in China are already taking some of the maize genes we characterized and are using them to significantly improve disease resistance in rice.”

Historically, defining a complete new biochemical pathway in crops has required stepwise progress and often the better part of an entire research career. In the new study, the UC San Diego biologists describe how they combined an array of scientific approaches to clearly define six genes that encode enzymes responsible for the production of key maize antibiotics known to control disease resistance.

Maize plants lacking small molecule antibiotic defenses, derived from a skeleton of 20 carbon atoms known as diterpenoids, commonly suffer dramatic increases in fungal disease susceptibility.

“Most people appreciate that pine trees are heavily protected by sticky acid resins that kill or deter a majority of microbes and insects,” said Schmelz. “We describe a complete maize biosynthetic pathway that also makes acid resins on-demand at the site of fungal attack. Interestingly, almost the entire pathway is derived from evolutionarily recent gene duplications from diverse hormone pathways related to plant growth and human testosterone metabolism.”

One of the evolutionary steps was a comparatively recent gene duplication three million years ago from the hormone pathway responsible for plant growth called gibberellins. In a step not clearly borrowed from hormone biosynthesis, two highly promiscuous oxidative enzymes (with broad substrate and product specificity) termed cytochrome P450s were characterized to produce unique reactions different from known conifer pathways. In total, the effort leveraged more than 2,000 plant samples, each with 36,861 transcripts, spanning 300 different maize lines to systematically narrow candidates and define a maize pathway for antibiotics effective against fungal pathogens.

###

In addition to Ding, Huffaker and Schmelz, coauthors of the paper include Katherine Murphy, graduate students Elly Poretsky and Andrew Sher, along with Evan Saldivar, Mengxi Wu, Zhouxin Shen and Steve Briggs (UC San Diego); Gabriel Castro-Falcon and Chambers Hughes (Scripps Institution of Oceanography, UC San Diego); Sibongile Mafu and Philipp Zerbe (UC Davis); Bing Yang and Si Nian Char (Iowa State University, Ames); Shawn Christensen (Agricultural Research Service, Gainesville, Florida); Qiang Wang (Sichuan Agricultural University); Lexiang Ji and Robert Schmitz (University of Georgia); Karl Kremling and Edward Buckler (Cornell University); and Jorg Bohlmann (University of British Columbia).

Media Contact
Mario Aguilera
[email protected]

Original Source

https://ucsdnews.ucsd.edu/pressrelease/biologists-untangle-growth-and-defense-in-maize-define-key-antibiotic-pathways

Related Journal Article

http://dx.doi.org/10.1038/s41477-019-0509-6

Tags: Agricultural Production/EconomicsAgricultureBiologyBiomedical/Environmental/Chemical EngineeringBiotechnologyEcology/EnvironmentFood/Food ScienceGenesGeneticsPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Korea University Study Uncovers Hidden Complexity Within Recurrent Brain Tumors

September 11, 2025

Breakthrough in Pancreatic Precision: Novel Test Revolutionizes Diagnosis and Treatment of Hereditary Pancreatitis

September 11, 2025

SeoulTech Scientists Detect Elevated PAH Levels in Popular Foods

September 11, 2025

Phenazines Impact Microbiomes by Targeting Topoisomerase IV

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    63 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Korea University Study Uncovers Hidden Complexity Within Recurrent Brain Tumors

Breakthrough in Pancreatic Precision: Novel Test Revolutionizes Diagnosis and Treatment of Hereditary Pancreatitis

SeoulTech Scientists Detect Elevated PAH Levels in Popular Foods

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.