• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Biologists shed light on mystery of how microbes evolve and affect hosts

Bioengineer by Bioengineer
November 2, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Bill Cole

TORONTO, ON – The era of COVID-19 and the need to constantly wash one’s hands and sanitize things have brought microbes to new levels of scrutiny, particularly for their impact on an individual’s health.

While associations between microbes and their hosts, from the beneficial – think probiotics in yogurt – to the harmful – such as with viruses spread by touch – have long been known, little is known about how microbes evolve and how their evolution affects the health of their hosts.

Now, researchers at the University of Toronto and the University of Illinois at Urbana-Champaign have found that as microbes evolve and adapt to their unique hosts, they become less beneficial to hosts of other genotypes.

The findings suggest that there is probably not one universally healthy microbiome. Rather, transplanted microbes might need time to adapt to a new host before they bring benefits.

“There is this prevailing idea that the ‘survival of the fittest’ means that individuals should reap the benefits others have to offer without reciprocating,” says Megan Frederickson, associate professor in the Department of Ecology & Evolutionary Biology at the University of Toronto, and senior author of a study published in Science. “We found that over time, microbes became better adapted to their hosts through the evolution of more, rather than less, cooperation.”

The researchers, led by Frederickson and lead author Rebecca Batstone, a graduate of Frederickson’s lab and now a postdoctoral fellow at the University of Illinois at Urbana-Champaign, set out to learn what happens to microbes when paired with the same host across multiple generations of that host.

Their first step was to grow several hundred specimens of the clover-like Medicago truncatula plant in a greenhouse, giving each an initial mixture of two strains of the nitrogen-fixing bacteria Ensifer meliloti. Subsequently, they re-planted new seeds into the same pots, and repeated the process for a total of five plant generations.

After a year in the greenhouse, the researchers grew a new batch of plants, and tested the evolved microbes on them, mixing and matching different evolved microbes and different hosts. They compared how well the plants grew and how many associations they formed when they were given the original or evolved microbes, and when they were given microbes that evolved on different hosts.

Finally, the researchers sequenced the entire genomes of original and evolved microbes to see how they differed genetically.

“When we put microbes from the beginning and the end of the experiment back onto hosts, we found they did best with the same hosts they evolved on, suggesting they adapted to their local host,” said Batstone. “The derived microbes were more beneficial when they shared an evolutionary history with their host.”

The researchers say the finding suggests that evolution might favour cooperation and that scientists might be able to use experimental evolution in a laboratory setting to make microbes that provide more benefits to their hosts.

“When plants or even animals arrive in new environments, perhaps as invasive species or because they are responding to a changing climate, the microbes they encounter may be initially poor partners. But these microbes might rapidly adapt and develop a more beneficial relationship,” said Frederickson.

###

The research was supported by the Natural Sciences and Engineering Research Council of Canada and the University of Toronto.

MEDIA CONTACTS:

Megan Frederickson

Department of Ecology & Evolutionary Biology

University of Toronto

[email protected]

Rebecca Batstone

Carl R. Woese Institute for Genomic Biology

University of Illinois at Urbana-Champaign

[email protected]

Sean Bettam

Communications + Public Affairs
Faculty of Arts & Science

University of Toronto

[email protected]

Media Contact
Sean Bettam
[email protected]

Related Journal Article

http://dx.doi.org/10.1126/science.abb7222

Tags: BacteriologyBiologyEvolutionGenesMicrobiologyParasitologyPlant SciencesVirology
Share12Tweet8Share2ShareShareShare2

Related Posts

IGF1 Levels Drop in Preeclampsia Impacting Trophoblasts

IGF1 Levels Drop in Preeclampsia Impacting Trophoblasts

November 27, 2025
Winter Waterbirds Adapt to Extreme Drought Challenges

Winter Waterbirds Adapt to Extreme Drought Challenges

November 27, 2025

MCM5 Boosts Glioblastoma Growth via Cell Cycle Regulation

November 27, 2025

NRAMP Transporters Unveil Heavy Metal Tolerance Diversity

November 27, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    103 shares
    Share 41 Tweet 26
  • Scientists Create Fast, Scalable In Planta Directed Evolution Platform

    101 shares
    Share 40 Tweet 25

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Triboelectric Discharges Detected in Martian Dust Storms

Noninvasive Optoacoustic Imaging Reveals Mouse Heart Dynamics

IGF1 Levels Drop in Preeclampsia Impacting Trophoblasts

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.