• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Biological machinery of cell’s ‘executioner’ yields secrets of its control

Bioengineer by Bioengineer
April 26, 2019
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: St. Jude Children’s Research Hospital

Researchers led by St. Jude Children’s Research Hospital structural biologists have discovered how the cell switches on an executioner mechanism called necroptosis that induces damaged or infected cells to commit suicide to protect the body.

Abnormal function of necroptosis also plays a role in the pathology of a broad array of diseases. Cancer cells avoid destruction by inhibiting necroptosis; and abnormal activation of necroptosis is linked to the damage from multiple sclerosis, Parkinson’s disease and tissue injury from blood flow loss. Thus, the researchers’ basic findings opens the pathways for drugs to treat those disorders by controlling necroptosis.

Led by structural biologist Tudor Moldoveanu, Ph.D., an assistant member of St. Jude Department of Structural Biology, the team included scientists from St. Jude, and the Stanford University and Vanderbilt University Schools of Medicine. The research was published today in the scientific journal Cell Chemical Biology.

Their research revealed how a set of molecules called inositol phosphates acts as an activating code, like the combination to a safe, to unleash the cell-killing mechanism of a molecule called MLKL. The activation triggers an “executioner domain” of the MLKL molecule to break down the integrity of the cell membrane and kill the cell.

###

The first author was Dan McNamara of St. Jude. The other St. Jude authors were Christy Grace, Cristina Guibao, Casey Cai, Hong Wu, Ravi Kalathur, Giovanni Quarato, Douglas Green and Amanda Nourse. Co-authors from the Stanford University School of Medicine were Cole Dovey, Jonathan Diep and Jan Carette. Co-authors from the Vanderbilt University School of Medicine were Andrew Hale and John York.

The work was supported by a St. Jude Academic Programs Office Special Postdoctoral Fellowship, the David and Lucile Packard Foundation, the National Institutes of Health (R01CA169291, F30HL143826, R01GM124404, T32AI007328, DP2AI104557, P30CA021765) and ALSAC, the fundraising and awareness organization of St. Jude.

Media Contact
Corey Carmichael
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.chembiol.2019.03.010

Tags: BiologyCell BiologyMedicine/HealthMicrobiologyMolecular BiologyParkinson
Share12Tweet8Share2ShareShareShare2

Related Posts

Interpretable Deep Learning for Anticancer Peptide Prediction

September 13, 2025

Navigating Shadows: Treating Anorexia and C-PTSD

September 13, 2025

Preoperative BMI Influences Outcomes in Infective Endocarditis

September 13, 2025

Adverse Events in Asian Adults on Brivaracetam

September 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Xanthan Gum Production with Essential Oil By-products

Groundwater Pesticide Contamination: Challenges and Solutions

FBXW11 Ubiquitinates YB1, Suppressing Hepatocarcinoma Growth

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.