• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS

Bioengineers print ears that look and act like the real thing

Bioengineer by Bioengineer
October 29, 2013
in NEWS
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
 
"This is such a win-win for both medicine and basic science, demonstrating what we can achieve when we work together," said co-lead author Lawrence Bonassar, associate professor of biomedical engineering.
 
The novel ear may be the solution reconstructive surgeons have long wished for to help children born with ear deformity, said co-lead author Dr. Jason Spector, director of the Laboratory for Bioregenerative Medicine and Surgery and associate professor of plastic surgery at Weill Cornell.
 
"A bioengineered ear replacement like this would also help individuals who have lost part or all of their external ear in an accident or from cancer," Spector said.
 
Replacement ears are usually constructed with materials that have a Styrofoam-like consistency, or sometimes, surgeons build ears from a patient's harvested rib. This option is challenging and painful for children, and the ears rarely look completely natural or perform well, Spector said.
 
To make the ears, Bonassar and colleagues started with a digitized 3-D image of a human subject's ear and converted the image into a digitized "solid" ear using a 3-D printer to assemble a mold.
 
They injected the mold with collagen derived from rat tails, and then added 250 million cartilage cells from the ears of cows. This Cornell-developed, high-density gel is similar to the consistency of Jell-O when the mold is removed. The collagen served as a scaffold upon which cartilage could grow.
 
The process is also fast, Bonassar added: "It takes half a day to design the mold, a day or so to print it, 30 minutes to inject the gel, and we can remove the ear 15 minutes later. We trim the ear and then let it culture for several days in nourishing cell culture media before it is implanted."
 
The incidence of microtia, which is when the external ear is not fully developed, varies from almost 1 to more than 4 per 10,000 births each year. Many children born with microtia have an intact inner ear, but experience hearing loss due to the missing external structure.
 
Bonassar and Spector have been collaborating on bioengineered human replacement parts since 2007. Bonassar has also worked with Weill Cornell neurological surgeon Dr. Roger Härtl on bioengineered disc replacements using some of the same techniques demonstrated in the PLOS One study.
 
The researchers specifically work on replacement human structures that are primarily made of cartilage — joints, trachea, spine, nose — because cartilage does not need to be vascularized with a blood supply in order to survive.
 
They are now looking at ways to expand populations of human ear cartilage cells in the laboratory so that these cells can be used in the mold, instead of cow cartilage.
 
"Using human cells, specifically those from the same patient, would reduce any possibility of rejection," Spector said.
 
He added that the best time to implant a bioengineered ear on a child would be when they are about 5 or 6 years old. At that age, ears are 80 percent of their adult size.
 
If all future safety and efficacy tests work out, it might be possible to try the first human implant of a Cornell bioengineered ear in as little as three years, Spector said.
 
Story Source:
The above story is reprinted from materials provided by Cornell University. The original article was written by Anne Ju, Cornell Chronicle. IMAGE Credit: Lindsay France/University Photography

 

Tags: BIOENGINEERBioengineeringBioenginered Ear
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Detecting Theileria, Babesia in Southern Xinjiang Cattle

November 20, 2025
blank

Hybrid Deep Learning Enhances Colorectal Cancer Stroma Evaluation

November 20, 2025

Link Between Prenatal Air Pollution and Child Autism

November 20, 2025

Behavioral Devaluation Linked to Local Dopamine Resistance

November 20, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    202 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    211 shares
    Share 84 Tweet 53
  • Neurological Impacts of COVID and MIS-C in Children

    91 shares
    Share 36 Tweet 23
>

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Detecting Theileria, Babesia in Southern Xinjiang Cattle

Hybrid Deep Learning Enhances Colorectal Cancer Stroma Evaluation

Link Between Prenatal Air Pollution and Child Autism

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.