• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, March 1, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS

Bioengineers Make DNA Into a Living Flash Drive

Bioengineer by Bioengineer
May 28, 2012
in NEWS
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
 
In a report published this week in Proceedings of the National Academy of Sciences, they detail how they developed rewritable DNA memory that works in living cells and can keep its data even as cells divide and multiply. DNA memory already exists but has been limited to write-once versions that can record only as many cellular events (such as cellular divisions) as there are bits. But the reversible storage system the Stanford researchers have ginned up is capable of being expanded to record a potentially huge number of events—2n events, where n is the number of bits.
 
In the short term, say its inventors, this improved biological memory could enhance the study of how we age and how cancer grows. But much further out lies the possibility of reprogramming cells to slow the aging process or to act as sentries that prevent cancer’s uncontrolled cell division.
 
The rewritable recombinase addressable data (RAD) module created by the Stanford bioengineers is a segment of DNA that switches between states when the bacteria carrying it encounters specific proteins. A class of proteins called “integrases” scan DNA sequences until they find two specific sequences (attachment sites called attB and attP) and bind to them. The integrase then cuts out the DNA strand between those sites, flips it over, and reattaches it so that string of base pairs reads in reverse. This chemical process, which the researchers refer to as “setting,” also changes the characteristics of the attachment sites attB and attP. (They become attL and attR, respectively.) This upside-down state, says the Stanford team, is the equivalent of a 1 in an electronic memory device.
 
Adding integrase mixed with another class of protein called “excisionases” reverses the process, “resetting” the DNA strand to its original, or 0, state. (Excisionase alone has no effect that anyone is aware of.) Drew Endy, a Stanford assistant professor of bioengineering, who led the research, says that the major technical hurdle the group had to overcome was avoiding what’s called “bidirectionality.” That is the tendency for some recombinase proteins (the respective versions of integrase and excisionase that the researchers chose are two of many) to cause the RAD module to flip, and then to cause it to flip back to its previous state before the change in state is recorded.
 
But in the end, say the researchers, they created a system of DNA registers that switch when, and only when, they’re in the presence of the protein-based inducers. As important, they note, is that the states can be switched repeatedly with no performance degradation.
“Developing biological systems, especially those based on DNA and cells, that ‘compute’ like digital computers has been challenging,” says Steven Benner, a distinguished fellow at the Foundation for Applied Molecular Evolution in Gainesville, Fla. Benner explains the nature of the challenge, noting that “biological molecules, like all molecules, intrinsically do ‘analog’ computation better than ‘digital.’ [The Stanford researchers’] latest work is a big step toward getting digital behavior from structures that are, fundamentally, not digital.”
 
Asked how much data the device they demonstrated is able to store, Endy proudly reports that it is currently capable of storing 1 bit, as in roughly a hundred billionth of the amount of data that can be stored on a key-fob-size USB flash drive. Though the DNA memory device’s capacity is relatively minuscule, “its purpose is not to compete with silicon, but to get access to data storage in places where silicon doesn’t work,” says Endy.
 
In fact, says the Stanford researcher, 8 bits is more than enough to keep track of changes in any replicating biological system. With that capacity, he envisions applications such as a fail-safe element in cellular therapeutics. When, say, a cancer patient is injected with living cells reengineered to attack a tumor, the RAD module could be set to control the rate and number of cell divisions so that the cure doesn’t morph into a curse.

Story Source:

The above story is reprinted from materials provided by Spectrum.ieee.org. The original article was written by WILLIE D. JONES

Tags: Living Flash Disk
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Microplastic sizes in Hudson-Raritan Estuary and coastal ocean revealed

March 1, 2021
IMAGE

Cancer: a new killer lymphocyte enters the ring

March 1, 2021

Single cell sequencing opens new avenues for eradicating leukemia at its source

March 1, 2021

Boston College physicist Brian Zhou receives NSF CAREER Award

March 1, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    648 shares
    Share 259 Tweet 162
  • People living with HIV face premature heart disease and barriers to care

    82 shares
    Share 33 Tweet 21
  • Global analysis suggests COVID-19 is seasonal

    38 shares
    Share 15 Tweet 10
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

MaterialsBiologyPublic HealthEcology/EnvironmentcancerCell BiologyGeneticsTechnology/Engineering/Computer ScienceMedicine/HealthInfectious/Emerging DiseasesClimate ChangeChemistry/Physics/Materials Sciences

Recent Posts

  • Microplastic sizes in Hudson-Raritan Estuary and coastal ocean revealed
  • Cancer: a new killer lymphocyte enters the ring
  • Single cell sequencing opens new avenues for eradicating leukemia at its source
  • Boston College physicist Brian Zhou receives NSF CAREER Award
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In