• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Biocrude passes the 2,000-hour catalyst stability test

Bioengineer by Bioengineer
March 25, 2021
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Sewage and food waste biocrude conversion process reaches major milestone

IMAGE

Credit: (Illustration by Michael Perkins | Pacific Northwest National Laboratory)

RICHLAND, WASH.–A large-scale demonstration converting biocrude to renewable diesel fuel has passed a significant test, operating for more than 2,000 hours continuously without losing effectiveness. Scientists and engineers led by the U.S. Department of Energy’s Pacific Northwest National Laboratory conducted the research to show that the process is robust enough to handle many kinds of raw material without failing.

“The biocrude oil came from many different sources, including wastewater sludge from Detroit, and food waste collected from prison and an army base,” said John Holladay, a PNNL scientist and co-director of the joint Bioproducts Institute, a collaboration between PNNL and Washington State University. “The research showed that essentially any biocrude, regardless of wet-waste sources, could be used in the process and the catalyst remained robust during the entire run. While this is just a first step in demonstrating robustness, it is an important step.”

The milestone was first described at a virtual conference organized by NextGenRoadFuels, a European consortium funded by the EU Framework Programme for Research and Innovation. It addresses the need to convert biocrude, a mixture of carbon-based polymers, into biofuels. In the near term, most expect that these biofuels will be further refined and then mixed with petroleum-based fuels used to power vehicles.  

“For the industry to consider investing in biofuel, we need these kinds of demonstrations that show durability and flexibility of the process,” said Michael Thorson, a PNNL engineer and project manager.

Biocrude to biofuel, the crucial conversion

Just as crude oil from petroleum sources must be refined to be used in vehicles, biocrude needs to be refined into biofuel. This step provides the crucial “last mile” in a multi-step process that starts with renewables such as crop residues, food residues, forestry byproducts, algae, or sewage sludge. For the most recent demonstration, the biocrude came from a variety of sources including converted food waste salvaged from Joint Base Lewis-McChord, located near Tacoma, Wash., and Coyote Ridge Corrections Center, located in Connell, Wash. The initial step in the process, called hydrothermal liquefaction, is being actively pursued in a number of demonstration projects by teams of PNNL scientists and engineers.

The “last mile” demonstration project took place at the Bioproducts, Sciences, and Engineering Laboratory on the Richland, Wash. campus of Washington State University Tri-Cities. For 83 days, reactor technician Miki Santosa and supervisor Senthil Subramaniam fed a constant flow of biocrude into carefully honed and highly controlled reactor conditions. The hydrotreating process introduces hydrogen into a catalytic process that removes sulfur and nitrogen contaminants found in biocrude, producing a combustible end-product of long-chain alkanes, the desirable fuel used in vehicle engines. Chemist Marie Swita analyzed the biofuel product to ensure it met standards that would make it vehicle-ready.

Diverting carbon to new uses

“Processing food and sewage waste streams to extract useful fuel serves several purposes,” said Thorson. Food waste contains carbon. When sent to a landfill, that food waste gets broken down by bacteria that emit methane gas, a potent greenhouse gas and contributor to climate change. Diverting that carbon to another use could reduce the use of petroleum-based fuels and have the added benefit of reducing methane emissions.

The purpose of this project was to show that the commercially available catalyst could stand up to the thousands of hours of continuous processing that would be necessary to make biofuels a realistic contributor to reducing the world’s carbon footprint. But Thorson pointed out that it also showed that the biofuel product produced was of high quality, regardless of the source of biocrude?an important factor for the industry, which would likely be processing biocrude from a variety of regional sources.

Indeed, knowing that transporting biocrude to a treatment facility could be costly, modelers are looking at areas where rural and urban waste could be gathered from various sources in local hubs. For example, they are assessing the resources available within a 50-mile radius of Detroit, Mich. There, the sources of potential biocrude feedstock could include food waste, sewage sludge and cooking oil waste. In areas where food waste could be collected and diverted from landfills, much as recycling is currently collected, a processing plant could be up to 10 times larger than in rural areas and provide significant progress toward cost and emission-reduction targets for biofuels.

Commercial biofuels on the horizon

Milestones such as hours of continuous operation are being closely watched by investor groups in the U.S. and Europe, which has set aggressive goals, including being the first climate-neutral continent by 2050 and achieving a 55% reduction in greenhouse gas emissions by 2030. “A number of demonstration projects across Europe aim to commercialize this process in the next few years,” Holladay said.

The next steps for the research team include gathering more sources of biocrude from various waste streams and analyzing the biofuel output for quality. In a new collaboration, PNNL will partner with a commercial waste management company to evaluate waste from many sources. Ultimately, the project will result in a database of findings from various manures and sludges, which could help decide how facilities can scale up economically.

“Since at least three-quarters of the input and output of this process consists of water, the ultimate success of any industrial scale-up will need to include a plan for dealing with wastewater,” said Thorson. This too is an active area of research, with many viable options available in many locations for wastewater treatment facilities.

###

DOE’s Bioenergy Technologies Office has been instrumental in supporting this project, as well as the full range of technologies needed to make biofuels feasible.

Pacific Northwest National Laboratory draws on its distinguishing strengths in chemistry, Earth sciences, biology and data science to advance scientific knowledge and address challenges in sustainable energy and national security. Founded in 1965, PNNL is operated by Battelle for the U.S. Department of Energy’s Office of Science, which is the single largest supporter of basic research in the physical sciences in the United States. DOE’s Office of Science is working to address some of the most pressing challenges of our time. For more information, visit PNNL’s News Center. Follow us on Twitter, Facebook, LinkedIn and Instagram.

Media Contact
Karyn Hede
[email protected]

Original Source

https://www.pnnl.gov/news-media/biocrude-passes-2000-hour-catalyst-stability-test

Tags: Agricultural Production/EconomicsBiomedical/Environmental/Chemical EngineeringChemistry/Physics/Materials SciencesClimate ScienceEnergy SourcesEnergy/Fuel (non-petroleum)Industrial Engineering/ChemistryPollution/RemediationResearch/Development
Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative Advances in 2.5D MOF Materials Using Triptycene Derivatives

Innovative Advances in 2.5D MOF Materials Using Triptycene Derivatives

August 1, 2025
blank

HKU Researchers Illuminate the Impact of Urban Light Pollution

August 1, 2025

Advanced ANF/MXene-Enhanced Hydrogels Pave the Way for Flexible EMI Shielding and Wearable Sensors

August 1, 2025

Nanodevice Harnesses Sound Waves to Shape Light, Revolutionizing Displays and Imaging Technologies

August 1, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    37 shares
    Share 15 Tweet 9
  • Sustainability Accelerator Chooses 41 Promising Projects Poised for Rapid Scale-Up

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Niclosamide Nanohybrid Trial for Mild-Moderate COVID-19

HADHA Controls JAK/STAT3 in Glioblastoma via Metabolism

Study Finds Medicare Could Cut $3.6 Billion in Costs Without Impacting Older Adults

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.