• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Biochar provides high-definition electron pathways in soil

Bioengineer by Bioengineer
April 3, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

ITHACA, N.Y. – All plants need electrons to aid biological and chemical tasks. Cornell University scientists have discovered a new high-definition system that allows electrons to travel through soil farther and more efficiently than previously thought.

"Microorganisms need electrons for everything they do. If they consume nutrients or spew out methane or expel carbon dioxide – for any living, biological process – they need electrons," said Tianran Sun, postdoctoral researcher in soil and crop sciences and lead author of the paper that appears March 31 in Nature Communications.

Like large volumes of electricity that flow from Niagara Falls throughout upstate New York, electrons convey through soil via carbon. "We weren't aware of this high-definition soil distribution system transporting electrons from far away. It's not kilometers, it's not meters, but centimeter distances that matter in soil," said Johannes Lehmann, professor of soil science.

In fact, amending the soil with pyrogenic carbon – known as biochar – brings high definition to the electron network. In turn, the electrons spur conductive networks and growth, said Sun.

"Previously we thought there were only low-performing electron pathways in the soil – and now we've learned the electrons are channeled through soil very efficiently in a high-performing way," said Lehmann.

Lehmann and the members of his laboratory had struggled to understand why microorganisms thrived in the presence of biochar. The group removed soil phosphorus, making the environment inhospitable. They ruled out water and nutrients. They discarded the use of biochar as a food source because microorganisms cannot consume much of it. Through Sun's background in environmental chemistry, the scientists found that microorganisms may be drawn to electrons that the biochar can transport.

"These results will lead to a better understanding of microbial responses in soil and microbial metabolism, including long-term effects on greenhouse gas emissions," Sun said.

###

The National Science Foundation and the U.S. Department of Agriculture funded this research.

Cornell University has television, ISDN and dedicated Skype/Google+ Hangout studios available for media interviews. For additional information, see this Cornell Chronicle story.

Media Contact

Melissa Osgood
[email protected]
607-255-2059
@cornell

http://pressoffice.cornell.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Breast Cancer Case Study Offers Insights to Shape Future Clinical Trials

November 10, 2025

Ultrasound AI Predicts Breast Cancer Treatment Success

November 10, 2025

Ketohexokinase Link Drives Alcohol Intake and Liver Disease

November 10, 2025

Oat Protein Iron Hybrids: Effective Fortification Solution

November 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    315 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    207 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1303 shares
    Share 520 Tweet 325

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Breast Cancer Case Study Offers Insights to Shape Future Clinical Trials

Ultrasound AI Predicts Breast Cancer Treatment Success

Ketohexokinase Link Drives Alcohol Intake and Liver Disease

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.