• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, July 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Synthetic Biology

Bio-hybrid Machines

Bioengineer by Bioengineer
January 20, 2014
in Synthetic Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The alien world of aquatic micro-organisms just got new residents: synthetic self-propelled swimming bio-bots.

Bio-hybrid Machines

A team of engineers has developed a class of tiny bio-hybrid machines that swim like sperm, the first synthetic structures that can traverse the viscous fluids of biological environments on their own. Led by Taher Saif, the University of Illinois Gutgsell Professor of mechanical science and engineering, the team published its work in the journal Nature Communications.

“Micro-organisms have a whole world that we only glimpse through the microscope,” Saif said. “This is the first time that an engineered system has reached this underworld.”

The bio-bots are modeled after single-celled creatures with long tails called flagella – for example, sperm. The researchers begin by creating the body of the bio-bot from a flexible polymer. Then they culture heart cells near the junction of the head and the tail. The cells self-align and synchronize to beat together, sending a wave down the tail that propels the bio-bot forward.

This self-organization is a remarkable emergent phenomenon, Saif said, and how the cells communicate with each other on the flexible polymer tail is yet to be fully understood. But the cells must beat together, in the right direction, for the tail to move.

“It’s the minimal amount of engineering – just a head and a wire,” Saif said. “Then the cells come in, interact with the structure, and make it functional.”

See an animation of the bio-bots in motion and a video of a free-swimming bot.

The team also built two-tailed bots, which they found can swim even faster. Multiple tails also opens up the possibility of navigation. The researchers envision future bots that could sense chemicals or light and navigate toward a target for medical or environmental applications.

“The long-term vision is simple,” said Saif, who is also part of the Beckman Institute for Advanced Science and Technology at the U. of I. “Could we make elementary structures and seed them with stem cells that would differentiate into smart structures to deliver drugs, perform minimally invasive surgery or target cancer?”

The swimming bio-bot project is part of a larger National Science Foundation-supported Science and Technology Center on Emergent Behaviors in Integrated Cellular Systems, which also produced the walking bio-bots developed at Illinois in 2012.

“The most intriguing aspect of this work is that it demonstrates the capability to use computational modeling in conjunction with biological design to optimize performance, or design entirely different types of swimming bio-bots,” said center director Roger Kamm, a professor of biological and mechanical engineering at the Massachusetts Institute of Technology. “This opens the field up to a tremendous diversity of possibilities. Truly an exciting advance.”

The alien world of aquatic micro-organisms just got new residents: synthetic self-propelled swimming bio-bots.

A team of engineers has developed a class of tiny bio-hybrid machines that swim like sperm, the first synthetic structures that can traverse the viscous fluids of biological environments on their own. Led by Taher Saif, the University of Illinois Gutgsell Professor of mechanical science and engineering, the team published its work in the journal Nature Communications.

“Micro-organisms have a whole world that we only glimpse through the microscope,” Saif said. “This is the first time that an engineered system has reached this underworld.”

The bio-bots are modeled after single-celled creatures with long tails called flagella – for example, sperm. The researchers begin by creating the body of the bio-bot from a flexible polymer. Then they culture heart cells near the junction of the head and the tail. The cells self-align and synchronize to beat together, sending a wave down the tail that propels the bio-bot forward.

This self-organization is a remarkable emergent phenomenon, Saif said, and how the cells communicate with each other on the flexible polymer tail is yet to be fully understood. But the cells must beat together, in the right direction, for the tail to move.

“It’s the minimal amount of engineering – just a head and a wire,” Saif said. “Then the cells come in, interact with the structure, and make it functional.”

See an animation of the bio-bots in motion and a video of a free-swimming bot.

The team also built two-tailed bots, which they found can swim even faster. Multiple tails also opens up the possibility of navigation. The researchers envision future bots that could sense chemicals or light and navigate toward a target for medical or environmental applications.

“The long-term vision is simple,” said Saif, who is also part of the Beckman Institute for Advanced Science and Technology at the U. of I. “Could we make elementary structures and seed them with stem cells that would differentiate into smart structures to deliver drugs, perform minimally invasive surgery or target cancer?”

The swimming bio-bot project is part of a larger National Science Foundation-supported Science and Technology Center on Emergent Behaviors in Integrated Cellular Systems, which also produced the walking bio-bots developed at Illinois in 2012.

“The most intriguing aspect of this work is that it demonstrates the capability to use computational modeling in conjunction with biological design to optimize performance, or design entirely different types of swimming bio-bots,” said center director Roger Kamm, a professor of biological and mechanical engineering at the Massachusetts Institute of Technology. “This opens the field up to a tremendous diversity of possibilities. Truly an exciting advance.”

Story Source:

The above story is based on materials provided by University of Illinois at Urbana-Champaign.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Democratizing synthetic biology

March 2, 2015
blank

A new path for novel synthetic polio vaccine

February 17, 2015

New class of synthetic molecules mimics antibodies

December 19, 2014

Synthetic Molecule Makes Cancer Self-Destruct

August 12, 2014
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    59 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    37 shares
    Share 15 Tweet 9
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Scientists Uncover Crucial Survival Mechanism in Soybeans Amid Heat and Drought

Researchers at Children’s Hospital of Philadelphia Identify Concussion-Related Vision Disorders Using Eye Tracking Metrics

Western Biologists Uncover Long-Standing Mystery Behind Cricket Song Mechanism

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.