• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, February 25, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Synthetic Biology

A new path for novel synthetic polio vaccine

Bioengineer by Bioengineer
February 17, 2015
in Synthetic Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists from the UK and USA are using technology that helped in the design of a new synthetic vaccine to combat the foot and mouth disease virus (FMDV) to now target the virus that causes polio. The synthetic vaccine that is currently being engineered in collaboration with Prof. Dave Rowlands at the University of Leeds would provide a powerful weapon in the fight to rid the world of polio. This project is being funded by a £438,000 grant from the World Health Organisation and the Bill & Melinda Gates Foundation.

Polio Virus

This is a radius colored surface representation of Type 1 poliovirus (Mahoney). The surface is colored from blue to red according to the distance from the particle center. Photo Credit: Dr. Liz Fry, Dept. Structural Biology, Oxford University

The team’s hope is to create a vaccine that does not contain the viral genome but instead ‘mimics’ the structure of the live virus. Such a vaccine would be quicker, easier and safer to produce. Even after the apparent global elimination of poliomyelitis it will be necessary to continue vaccination as a precaution against reintroduction of the virus from hidden sources, such as rare chronically infected carriers. A synthetic vaccine would fulfil this role without the inherent danger of accidental release of virus associated with the production of current vaccines. Eventually such vaccines could pave the way to completely eliminating the necessity to vaccinate

Speaking at the American Association for the Advancement of Science (AAAS 2015) meeting in San Jose on the 13th February 2015, Prof Dave Stuart, Life Sciences Director at Diamond Light Source, the UK’s national synchrotron science facility, and Professor of Structural Biology at Oxford University, explains: “Using a combination of techniques, including X-ray crystallography at Diamond and electron cryo-microscopy in Oxford, we’ve begun the task of gathering crystal structures and electron microscopy images that will tell us what we need to know to stabilise the shell of the virus and engineer a strong vaccine that has the ability to bring about the desired immune response in humans.”

“Following on from the success we’ve had with the foot and mouth disease vaccine, we aim to transfer the approach to vaccines for other viruses including polio. Early results with polio are very promising, with synthetic particles being produced and evidence of successful stabilisation.”

Prof Stuart has devoted his career as a structural biologist to outsmarting viruses to benefit human and animal health. 21st Century technology will, he believes, play a key role in helping us to dramatically improve our response times when new virus outbreaks occur. He adds, “Our basic research capabilities are being greatly enhanced by developments in a number of key areas such as synchrotron light sources, light microscopy and the now fantastically powerful electron microscopy technique.”

“Using the latest technology, we can engineer vaccines that are billions of times smaller than a pinhead, we can track viruses as they interact with living cells, and we can glean the detailed information required to look at pathogens and then design better therapies against them. At the same time, out in the field, we can have DNA sequencers that can aid gene sequencing and help speed up the process of designing new synthetic vaccines with the added advantage of not having to send deadly virus samples around the world.”

Scientists working on the next generation of vaccines and inhibitors to combat viruses and bacterial infections will have their research capabilities greatly enhanced when the UK’s new Electron Bio-Imaging Centre (eBIC) opens in late 2015. Conveniently located next to Diamond’s synchrotron building, the centre’s powerful cryo-electron microscopes will allow scientists to visualise the structure of the cell to help further understand molecular make-up and will provide new tools to image single bio-molecules.

Story Source:

The above story is based on materials provided by Oxford University.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Democratizing synthetic biology

March 2, 2015
blank

New class of synthetic molecules mimics antibodies

December 19, 2014

Synthetic Molecule Makes Cancer Self-Destruct

August 12, 2014

Synthetic gene circuits pump up cell signals

April 8, 2014

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    637 shares
    Share 255 Tweet 159
  • People living with HIV face premature heart disease and barriers to care

    81 shares
    Share 32 Tweet 20
  • Global analysis suggests COVID-19 is seasonal

    37 shares
    Share 15 Tweet 9
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Public HealthcancerChemistry/Physics/Materials SciencesEcology/EnvironmentTechnology/Engineering/Computer ScienceCell BiologyBiologyMedicine/HealthGeneticsMaterialsClimate ChangeInfectious/Emerging Diseases

Recent Posts

  • New ONC, NLM funding supports data exchange and response to COVID-19 pandemic
  • Toronto’s COVID-19 bike lane expansion boosted access to jobs, retail
  • Salk Professors Satchin Panda and Tatyana Sharpee honored with endowed chairs
  • New treatment location challenges thoughts on addiction
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In