• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Bio-based waterborne poly(vanillin-butyl acrylate)/mxene coatings for leather with desired warmth retention and antibacterial properties

Bioengineer by Bioengineer
August 21, 2023
in Chemistry
Reading Time: 3 mins read
0
Comprehensive performance comparison of leather coated with P(MV–BA)/MXene nanocomposite miniemulsion and P(St–BA).
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A study published in the journal of Engineering reveals a remarkable development in the field of green coating materials for leather. Researchers have successfully synthesized a solvent-free, bio-based antibacterial agent and aromatic monomer called methacrylated vanillin (MV). This innovative compound not only imparts antibacterial properties to leather coatings but also serves as an eco-friendly alternative to the petroleum-based carcinogen styrene (St).

Comprehensive performance comparison of leather coated with P(MV–BA)/MXene nanocomposite miniemulsion and P(St–BA).

Credit: Jianzhong Ma, Li Ma, Lei Zhang, Wenbo Zhang, Qianqian Fan, Buxing Han

A study published in the journal of Engineering reveals a remarkable development in the field of green coating materials for leather. Researchers have successfully synthesized a solvent-free, bio-based antibacterial agent and aromatic monomer called methacrylated vanillin (MV). This innovative compound not only imparts antibacterial properties to leather coatings but also serves as an eco-friendly alternative to the petroleum-based carcinogen styrene (St).

In this research article, titled “Bio-based Waterborne Poly(Vanillin-Butyl Acrylate)/MXene Coatings for Leather with Desired Warmth Retention and Antibacterial Properties,” the team of scientists describes the synthesis of waterborne bio-based P(MV–BA) miniemulsion through copolymerization of MV with butyl acrylate (BA). The miniemulsion polymerization method enables the production of a green coating material that is free from harmful solvents.

To enhance the performance of the P(MV–BA) miniemulsion, the researchers introduced MXene nanosheets into the formulation. MXene, known for its exceptional photothermal conversion capabilities and antibacterial properties, was dispersed in the P(MV–BA) miniemulsion using ultrasonic techniques. The migration of MXene nanosheets to the surface of the leather coatings during the solidification process, facilitated by ultrasonication and the amphiphilicity of MXene, maximizes its exposure to light and bacteria. This results in significant antibacterial efficacy and a remarkable increase in surface temperature.

The study demonstrated that when the dosage of MXene nanosheets was 1.4 wt%, the surface temperature of the leather coated with P(MV–BA)/MXene nanocomposite miniemulsion increased by approximately 15 °C in outdoor winter conditions. Additionally, under simulated sunlight treatment for 30 minutes, the antibacterial rate against Escherichia coli and Staphylococcus aureus reached nearly 100%. Furthermore, the introduction of MXene nanosheets improved the air permeability, water vapor permeability, and thermal stability of the coatings.

This research not only provides a novel and sustainable approach to developing bio-based nanocomposite coatings for leather but also offers the potential for zero-carbon heating based on sunlight during winter. By reducing the reliance on fossil fuels and minimizing greenhouse gas emissions, this technology aligns with the global goal of combating climate change. Moreover, the enhanced antibacterial properties of the coatings enable better protection against harmful bacteria, viruses, and other microorganisms.

The team’s findings open up new avenues for the production of environmentally friendly coating materials, not only for leather but also for paper, architectural coatings, and various other industries. The bio-based P(MV–BA)/MXene nanocomposite coating material exhibits superior wearing comfort and hygiene performance, making it an ideal green alternative to petroleum-based coating materials such as P(St–BA).

This study represents a significant contribution to the green and sustainable development of coating materials, revolutionizing the way we approach the production of leather and other coated products. The researchers’ commitment to innovation and their dedication to creating a more environmentally conscious future exemplify the transformative power of scientific research.

The paper “Bio-based Waterborne Poly(Vanillin-Butyl Acrylate)/MXene Coatings for Leather with Desired Warmth Retention and Antibacterial Properties” has been published in Engineering, authored by Jianzhong Ma, Li Ma, Lei Zhang, Wenbo Zhang, Qianqian Fan, Buxing Han. Full text of the open access paper: https://doi.org/10.1016/j.eng.2023.06.005. For more information about the Engineering, follow us on Twitter (https://twitter.com/EngineeringJrnl) & Like us on Facebook (https://www.facebook.com/EngineeringPortfolio).



Journal

Engineering

DOI

10.1016/j.eng.2023.06.005

Article Title

Bio-based Waterborne Poly(Vanillin-Butyl Acrylate)/MXene Coatings for Leather with Desired Warmth Retention and Antibacterial Properties

Article Publication Date

30-Jun-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative Immobilization Technique Enhances Surface Plasmon Resonance Analysis of Membrane Proteins

Innovative Immobilization Technique Enhances Surface Plasmon Resonance Analysis of Membrane Proteins

November 7, 2025
Radiative Coupled Evaporative Cooling Hydrogel Enables Above-Ambient Heat Dissipation and Enhanced Flame Retardancy

Radiative Coupled Evaporative Cooling Hydrogel Enables Above-Ambient Heat Dissipation and Enhanced Flame Retardancy

November 7, 2025

Electroactive Ferrocene Enables Shuttle-Free Aqueous Zinc–Iodine Cells

November 6, 2025

Exploring 3D Chaotic Microcavities with X-Ray Vision

November 6, 2025

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1301 shares
    Share 520 Tweet 325
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Optimizing Medication Processes in Nursing Homes Trial

Acinar ATF3 Loss Limits KRASG12D PanIN Progression

New Serum Biomarker Detects Ulcerative Colitis Effectively

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.