• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Big galaxies steal star-forming gas from their smaller neighbours

Bioengineer by Bioengineer
February 22, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ICRAR, NASA, ESA, the Hubble Heritage Team (STScI/AURA)

Large galaxies are known to strip the gas that occupies the space between the stars of smaller satellite galaxies.

In research published today, astronomers have discovered that these small satellite galaxies also contain less ‘molecular’ gas at their centres.

Molecular gas is found in giant clouds in the centres of galaxies and is the building material for new stars. Large galaxies are therefore stealing the material that their smaller counterparts need to form new stars.

Lead author Dr Adam Stevens is an astrophysicist based at UWA working for the International Centre for Radio Astronomy Research (ICRAR) and affiliated to the ARC Centre of Excellence in All Sky Astrophysics in 3 Dimensions (ASTRO 3D).

Dr Stevens said the study provides new systematic evidence that small galaxies everywhere lose some of their molecular gas when they get close to a larger galaxy and its surrounding hot gas halo.

“Gas is the lifeblood of a galaxy,” he said.

“Continuing to acquire gas is how galaxies grow and form stars. Without it, galaxies stagnate.

“We’ve known for a long time that big galaxies strip ‘atomic’ gas from the outskirts of small galaxies.

“But, until now, it hadn’t been tested with molecular gas in the same detail.”

ICRAR-UWA astronomer Associate Professor Barbara Catinella said galaxies don’t typically live in isolation.

“Most galaxies have friends,” she says.

“And when a galaxy moves through the hot intergalactic medium or galaxy halo, some of the cold gas in the galaxy is stripped away.

“This fast-acting process is known as ram pressure stripping.”

The research was a global collaboration involving scientists from the University of Maryland, Max Planck Institute for Astronomy, University of Heidelberg, Harvard-Smithsonian Center for Astrophysics, University of Bologna and Massachusetts Institute of Technology.

Molecular gas is very difficult to detect directly.

The research team took a state-of-the-art cosmological simulation and made direct predictions for the amount of atomic and molecular gas that should be observed by specific surveys on the Arecibo telescope in Puerto Rico and the IRAM 30-meter telescope in Spain.

They then took the actual observations from the telescopes and compared them to their original predictions.

The two were remarkably close.

Associate Professor Catinella, who led the Arecibo survey of atomic gas, says the IRAM 30-meter telescope observed the molecular gas in more than 500 galaxies.

“These are the deepest observations and largest sample of atomic and molecular gas in the local Universe,” she says.

“That’s why it was the best sample to do this analysis.”

The team’s finding fits with previous evidence that suggests satellite galaxies have lower star formation rates.

Dr Stevens said stripped gas initially goes into the space around the larger galaxy.

“That may end up eventually raining down onto the bigger galaxy, or it might end up just staying out in its surroundings,” he said.

But in most cases, the little galaxy is doomed to merge with the larger one anyway.

“Often they only survive for one to two billion years and then they’ll end up merging with the central one,” Dr Stevens said.

“So it affects how much gas they’ve got by the time they merge, which then will affect the evolution of the big system as well.

“Once galaxies get big enough, they start to rely on getting more matter from the cannibalism of smaller galaxies.”

###

Media Contact
Kirsten Gottschalk
[email protected]

Original Source

http://www.icrar.org/stealing-gas

Related Journal Article

http://dx.doi.org/10.1093/mnras/staa3662

Tags: AstronomyAstrophysicsSpace/Planetary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Concentration-Controlled Doping Converts P-Type Polymer into Its N-Type Equivalent

October 31, 2025
Korean Researchers Develop Self-Stacking Lithium Electrode to Prevent EV Battery Explosions

Korean Researchers Develop Self-Stacking Lithium Electrode to Prevent EV Battery Explosions

October 31, 2025

AI-Driven Discovery of Bright Fluorescent Frameworks

October 31, 2025

Yonsei University Pioneers Breakthrough in High-Voltage Solid-State Battery Technology

October 31, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1293 shares
    Share 516 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    202 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

STING Agonists Induce Monocyte Death Through Multiple Pathways

Concentration-Controlled Doping Converts P-Type Polymer into Its N-Type Equivalent

Inside the Nuclear Pore of Arabidopsis thaliana

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.