• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Big energy savings for tiny machines

Bioengineer by Bioengineer
May 22, 2019
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: SFU

Inside all of us are trillions of tiny molecular nanomachines that perform a variety of tasks necessary to keep us alive.

In a ground-breaking study, a team led by SFU physics professor David Sivak demonstrated for the first time a strategy for manipulating these machines to maximize efficiency and conserve energy. The breakthrough could have ramifications across a number of fields, including creating more efficient computer chips and solar cells for energy generation.

Nanomachines are small, really small — a few billionths of a meter wide, in fact. They’re also fast and capable of performing intricate tasks: everything from moving materials around a cell, building and breaking down molecules, and processing and expressing genetic information.

The machines can perform these tasks while consuming remarkably little energy, so a theory that predicts energetic efficiency helps us understand how these microscopic machines function and what goes wrong when they break down, Sivak says.

In the lab, Sivak’s experimental collaborators manipulated a DNA hairpin, whose folding and unfolding mimics the mechanical motion of more complicated molecular machines. As predicted by Sivak’s theory, they found that maximum efficiency and minimal energy loss occurred if they pulled rapidly on the hairpin when it was folded but slowly when it was on the verge of unfolding.

Steven Large, an SFU physics graduate student and co-first author on the paper, explains that DNA hairpins (and nanomachines) are so tiny and floppy that they are constantly jostled by violent collisions with surrounding molecules.

“Letting the jostling unfold the hairpin for you is an energy and time saver,” Large says.

Sivak thinks the next step is to apply the theory to learn how to drive a molecular machine through its operational cycle, while reducing the energy required to do that.

So, what is the benefit from making nanomachines more efficient? Sivak says that potential applications could be game-changing in a variety of areas.

“Uses could include designing more efficient computer chips and computer memory (reducing power requirements and the heat they emit), making better renewable energy materials for processes like artificial photosynthesis (increasing the energy harvested from the Sun) and improving the autonomy of biomolecular machines for biotech applications like drug delivery.”

The study was published in Proceedings of the National Academy of Sciences.

###

Media Contact
David Sivak
[email protected]

Original Source

http://www.sfu.ca/sfunews/stories/2019/05/big-energy-savings-for-tiny-machines.html

Related Journal Article

http://dx.doi.org/10.1073/pnas.1817778116

Tags: Biomechanics/BiophysicsChemistry/Physics/Materials SciencesMolecular PhysicsNanotechnology/Micromachines
Share12Tweet7Share2ShareShareShare1

Related Posts

Scientists Develop More Efficient, Cost-Effective Magnets

Scientists Develop More Efficient, Cost-Effective Magnets

August 20, 2025
Here’s a rewritten version of the headline for your science magazine post: “Cascading Water Creates Stunning Fluted Patterns”

Here’s a rewritten version of the headline for your science magazine post: “Cascading Water Creates Stunning Fluted Patterns”

August 20, 2025

Advancing Database Technology to Enhance Detection of Designer Drugs

August 20, 2025

Scientists Unveil Groundbreaking Crystal That Produces Oxygen

August 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionary Wastewater Technology Addresses Fatbergs at Their Source

Blocking Brain Damage Could Slow Brain Cancer Growth

Nerve Damage from Cancer Triggers Chronic Inflammation and Undermines Immunotherapy Effectiveness

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.