• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

BFU physicists developed a new method to identify antibiotics-resistant bacteria

Bioengineer by Bioengineer
February 13, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A team of physicists from Immanuel Kant Baltic State University suggested a method to quickly identify single antibiotic-resistant bacteria cells that are the agents of tuberculosis.

IMAGE

Credit: Andrey Zyubin


A team of physicists from Immanuel Kant Baltic State University suggested a method to quickly identify single antibiotic-resistant bacteria cells that are the agents of tuberculosis. The new method helps find the bacteria and evaluate their resistance to antibiotics without damaging the biological material. The results of the first trial of the method were published in Data in Brief.

Tuberculosis remains one of the main causes of death in the world. According to the World Health Organization, over 1.5 mln people died of it in 2017. Each year the number of those infected with tuberculosis increases by 10 mln. The disease caused by antibiotic-resistant strains of Mycobacterium tuberculosis is the most dangerous. The strains of the Beijing family (named after the city they were first observed in) have also become resistant to many medicinal drugs. Methods of quick identification of drug-resistant bacteria are required both for clinical practice and scientific research. A team of researchers from Immanuel Kant Baltic Federal University together with their colleagues from Saint-Petersburg State Research Institute of Phthisiopulmonology and Saint-Petersburg State University suggested using Raman scattering spectrography to quickly analyze bacterial cells. This method helps identify the composition and structure of the studied material based on the scattering of laser radiation with certain wavelength by its sample. Spectroscopy is a non-invasive method, i.e. the material under study is not subject to any mechanical impact or destruction.

The study materials were provided by Saint-Petersburg State Research Institute of Phthisiopulmonology. The authors used bacterial strains obtained from lung expectorations of tuberculosis patients, as well as from bone tissue samples taken during surgeries. Before the experiments with Raman scattering spectrography the level of drug resistance of the bacteria was determined using standard biological and chemical methods.

To obtain information about the structure of the cells belonging to different strains, the scientists pointed the laser beam at different bacteria during the spectroscopy procedure. The cells of different strains appeared to scatter the light differently because resistance to antibiotics occurs, among other things, due to changes in the composition of bacterial cell wall components. Spectroscopy helped identify differences in the cell walls of drug-resistance and drug-sensitive bacteria.

The materials published by the authors included the images of strain bacterial cultures with different resistance to antibiotics and Raman spectrums typical for them. The information on bacteria from lungs and bone tissue was provided separately.

“The data published by us contains information of spectrums typical for different strains of Mycobacterium tuberculosis. According to the results of the experiment, Raman spectroscopy may be a useful tool for determining the levels of drug resistance in tuberculosis agents,” says Andrey Zyubin, a senior research associate at the Scientific and Educational Center “Fundamental and Applied Photonics. Nanophotonics”.

###

Media Contact
Julia Shkurkina
[email protected]

Original Source

https://www.sciencedirect.com/science/article/pii/S2352340918314884

Related Journal Article

http://dx.doi.org/10.1016/j.dib.2018.11.095

Tags: BacteriologyBiologyCell BiologyChemistry/Physics/Materials SciencesDiagnosticsMedicine/HealthMicrobiologyOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

Cerrado Ash Lowers Emissions, No Effect on Dung Beetles

Cerrado Ash Lowers Emissions, No Effect on Dung Beetles

September 9, 2025
Allicin-Silver Nanoparticle Hydrogel: A Breakthrough in Wound Healing

Allicin-Silver Nanoparticle Hydrogel: A Breakthrough in Wound Healing

September 9, 2025

Parasite Infection Alters Rat Blood and Tissue Health

September 9, 2025

Decoding Microbiome Dynamics with MDSINE2 Tool

September 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Cerrado Ash Lowers Emissions, No Effect on Dung Beetles

The X-Age Project Builds Chinese Aging Clock

Revolutionary Coupling Model Enhances Lithium-Ion Battery Performance

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.