• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, April 14, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Better anchor roots help crops grow in poor soils

Bioengineer by Bioengineer
December 30, 2019
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: © 2019 KAUST


A metabolite in plants that regulates the growth of anchor roots–vital for sustaining water and nutrient uptake in plants–has been identified and may have useful applications in agriculture.

Pigment compounds called carotenoids are found in all plants and play a key role in successful photosynthesis and the generation of plant hormones and metabolites. These products are formed when enzyme activity causes carotenoid molecules to split–a process known as cleavage. While many carotenoid products are known to play key biological roles, less is known about one group of cleavage molecules called di-apocarotenoids.

“Di-apocarotenoids have rarely been characterized due to their instability and low abundance,” says KAUST research scientist Kunpeng Jia, who worked on the project under the supervision of KAUST’s Salim Al-Babili. “Indeed, we are only beginning to understand what their biological significance might be and what functions they have.”

The KAUST researchers, in collaboration with scientists in the United States and Germany, conducted an extensive study on the presence and biological activities of di-apocarotenoids in Arabidopsis plants using developmental studies and state-of-the-art analytical chemistry techniques. Working with such inherently unstable compounds that have low molecular weights within plant tissues was a real challenge for Jianing Mi, from Al-Babili’s team, who honed lab techniques to extract and analyze the molecules without damaging them.

“We identified the di-apocarotenoid anchorene as a metabolite that sends a specific signal to trigger the formation of Arabidopsis anchor roots,” says Jia. “Because anchorene is a carotenoid product, correct carotenoid biosynthesis is also required for healthy root formation. We confirmed this using chemical inhibitors and Arabidopsis mutants.”

Further experiments showed that anchorene modulates the distribution of the plant hormone auxin in the anchor root formation site, which stimulates growth. Jia and coworkers found that increasing anchorene levels in carotenoid-deficient plants rescued anchor root growth, while promoting growth in normal seedlings. When they modified anchorene’s structure, it resulted in loss of activity.

“We’d like to explore the biological importance of anchorene further, and we also hope to understand exactly how plants produce this metabolite,” says Jia. “We will also examine the biological activity of anchorene in crop plants because our findings may be relevant in boosting yields.”

“Anchorene changes the root architecture by promoting anchor root formation, which increases root volume and facilitates water and nutrient absorption,” adds Al-Babili. “Therefore, it may be possible to apply anchorene in nutrient-deficient soils to promote root growth.”

###

Media Contact
Carmen Denman
[email protected]
012-808-3122

Original Source

https://discovery.kaust.edu.sa/en/article/916/better-anchor-roots-help-crops-grow-in-poor-soils

Related Journal Article

http://dx.doi.org/10.1126/sciadv.aaw6787

Tags: AgricultureBiologyFertilizers/Pest ManagementFood/Food SciencePlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

There is no ‘one size fits all’ approach to treat severe asthma; this study shows why

April 13, 2021
IMAGE

US power sector is halfway to zero carbon emissions

April 13, 2021

Inside the protein channel that keeps bacteria alive

April 13, 2021

Study cements age and location of hotly debated skull from early human Homo erectus

April 13, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    852 shares
    Share 341 Tweet 213
  • Jonathan Wall receives $1.79 million to develop new amyloidosis treatment

    60 shares
    Share 24 Tweet 15
  • UofL, Medtronic to develop epidural stimulation algorithms for spinal cord injury

    56 shares
    Share 22 Tweet 14
  • A sturdier spike protein explains the faster spread of coronavirus variants

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Climate ChangeBiologyEcology/EnvironmentMaterialsChemistry/Physics/Materials SciencesGeneticsInfectious/Emerging DiseasesTechnology/Engineering/Computer SciencePublic HealthcancerMedicine/HealthCell Biology

Recent Posts

  • Dueling evolutionary forces drive rapid evolution of salamander coloration
  • Cascading effects of noise on plants persist over long periods and after noise is removed
  • Chemical modification of RNA could play key role in polycystic kidney disease
  • World’s protected areas need more than a ‘do not disturb’ sign
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In