• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

BDNF-VEGF interplay key to rapid antidepressant actions

Bioengineer by Bioengineer
January 31, 2019
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A study in Biological Psychiatry investigates the mechanisms of fast-acting antidepressants

Philadelphia, January 31, 2019 — A study by researchers at Yale University reveals a complex interplay of two different growth factors in the rapid and long-lasting antidepressant effects of ketamine. The study, published in Biological Psychiatry, reports that the antidepressant-like actions of brain-derived neurotrophic factor (BDNF) require the release of vascular endothelial growth factor (VEGF).

“Surprisingly, the reciprocal relationship was also observed, indicating that BDNF-VEGF interdependence plays a crucial role in the actions of rapid-acting antidepressants,” said senior author Ronald Duman, PhD.

Ketamine requires the release of both BDNF and VEGF to produce its rapid antidepressant effects, but the connection between the two growth factors–which have different functions and act through different mechanisms–was unknown.

Using mice to model behaviors of depression, the researchers investigated the interaction of BDNF and VEGF. Administering BDNF or VEGF to a brain region implicated in depression, the medial prefrontal cortex (mPFC), produces rapid and long-lasting antidepressant-like actions similar to those of ketamine. In the study, Dr. Duman and colleagues found that removing VEGF from the mPFC prevented the antidepressant-like effects of BDNF in mice. When they performed similar experiments but instead blocked BDNF, the antidepressant-like effects of VEGF were prevented.

Deeper analysis using neuron cultures to examine how the two factors depend on each other revealed that BDNF signaling stimulates VEGF release in neurons and requires VEGF to produce its neurotrophic effects. Conversely, VEGF stimulates the release of BDNF and requires BDNF signaling to produce its neurotrophic effects.

“This observation may have important clinical implications. VEGF inhibitors are widely used to treat various cancers and can be associated with increased risk for depression and cognitive impairments sometimes called the ‘fog of chemotherapy’.

“Since most antidepressant effects are mediated by BDNF, and therefore VEGF, how should we treat these forms of depression and cognitive impairments? The answer to this question may draw us to BDNF-independent effects of antidepressants and new insights into the biology and treatment of depression,” said John Krystal, MD, Editor of Biological Psychiatry.

The results provide the first evidence that reciprocal interdependence of BDNF and VEGF plays a crucial role in their rapid antidepressant-like effects, revealing key mechanisms of ketamine, which requires both BDNF and VEGF. The findings also highlight avenues of research to better understand how each of the factors may affect a person’s risk of depression or their response to antidepressant drugs.

###

Notes for editors

The article is “Neurotrophic and Antidepressant Actions of Brain-Derived Neurotrophic Factor Require Vascular Endothelial Growth Factor,” by Satoshi Deyama, Eunyoung Bang, Taro Kato, Xiao-Yuan Li, and Ronald S. Duman (https://doi.org/10.1016/j.biopsych.2018.12.014). It appears in Biological Psychiatry, published by Elsevier.

Copies of this paper are available to credentialed journalists upon request; please contact Rhiannon Bugno at [email protected] or +1 214 648 0880. Journalists wishing to interview the authors may contact Ronald S. Duman at [email protected] or +1 203-974-7726.

The authors’ affiliations and disclosures of financial and conflicts of interests are available in the article.

John H. Krystal, MD, is Chairman of the Department of Psychiatry at the Yale University School of Medicine, Chief of Psychiatry at Yale-New Haven Hospital, and a research psychiatrist at the VA Connecticut Healthcare System. His disclosures of financial and conflicts of interests are available here.

About Biological Psychiatry

Biological Psychiatry is the official journal of the Society of Biological Psychiatry, whose purpose is to promote excellence in scientific research and education in fields that investigate the nature, causes, mechanisms and treatments of disorders of thought, emotion, or behavior. In accord with this mission, this peer-reviewed, rapid-publication, international journal publishes both basic and clinical contributions from all disciplines and research areas relevant to the pathophysiology and treatment of major psychiatric disorders.

The journal publishes novel results of original research which represent an important new lead or significant impact on the field, particularly those addressing genetic and environmental risk factors, neural circuitry and neurochemistry, and important new therapeutic approaches. Reviews and commentaries that focus on topics of current research and interest are also encouraged.

Biological Psychiatry is one of the most selective and highly cited journals in the field of psychiatric neuroscience. It is ranked 6th out of 142 Psychiatry titles and 9th out of 261 Neurosciences titles in the Journal Citations ReportsĀ® published by Clarivate Analytics. The 2017 Impact Factor score for Biological Psychiatry is 11.982. http://www.sobp.org/journal

About Elsevier

Elsevier is a global information analytics business that helps institutions and professionals advance healthcare, open science and improve performance for the benefit of humanity. Elsevier provides digital solutions and tools in the areas of strategic research management, R&D performance, clinical decision support and professional education, including ScienceDirect, Scopus, SciVal, ClinicalKey and Sherpath. Elsevier publishes over 2,500 digitized journals, including The Lancet and Cell, more than 38,000 e-book titles and many iconic reference works, including Gray’s Anatomy. Elsevier is part of RELX Group, a global provider of information and analytics for professionals and business customers across industries. http://www.elsevier.com

Media contact

Rhiannon Bugno, Editorial Office
Biological Psychiatry
+1 214 648 0880
[email protected]

Media Contact
Rhiannon Bugno
[email protected]
214-648-0880

Tags: BiochemistryDepression/AngerDiagnosticsMedical EducationMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

August 15, 2025
blank

Researchers Identify Molecular ā€œSwitchā€ Driving Chemoresistance in Blood Cancer

August 15, 2025

First Real-Time Recording of Human Embryo Implantation Achieved

August 15, 2025

Ecophysiology and Spread of Freshwater SAR11-IIIb

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nab-Paclitaxel Combo Outperforms Gemcitabine in Biliary Cancer

Neonatal Cord Metabolome Links to Teen Heart Health

Intratracheal Budesonide Boosts Preterm Infant Lung Health

  • Contact Us

Bioengineer.org Ā© Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org Ā© Copyright 2023 All Rights Reserved.