• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Balance dysfunction after traumatic brain injury linked to diminished sensory acuity

Bioengineer by Bioengineer
November 11, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at Kessler Foundation explored the integration of sensory acuity and balance control, developing new metric for quantifying impairment in individuals recovering from brain injury

IMAGE

Credit: Kessler Foundation

East Hanover, NJ. November 11, 2020. Kessler Foundation researchers have linked balance dysfunction in individuals with traumatic brain injury with diminished sensory acuity. This study used a psychophysical approach to develop a new metric called the perturbation perception threshold (PPT) for objectively quantifying impaired sensory acuity after traumatic brain injury. The article, “Evaluating sensory acuity as a marker of balance dysfunction after a traumatic brain injury: A psychophysical approach” (doi: 10.3389/fnins.2020.00836), was published August 11, 2020 in Frontiers in Neuroscience. It is available open access at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7431558

The authors are Rakesh Pilkar, PhD, Kiran Karunakaran, PhD, Akhila Veerubhotla, PhD, Naphtaly Ehrenberg, MS, Oluwaseun Ibironke, and Karen Nolan, PhD, from the Center for Mobility and Rehabilitation Engineering Research at Kessler Foundation.

Balance problems limit independence, and increase the risk of falls and/or injury after traumatic brain injury. To improve rehabilitation interventions, more knowledge is needed about the integration of the visual, vestibular and somatosensory factors that contribute to balance, and how brain injury can adversely affect this complex system of balance control.

Despite the importance of accurately perceiving external perturbations to maintaining balance, limited research has been done on the contributions of sensory acuity to balance dysfunction after traumatic brain injury, according to lead author Dr. Pilkar, the research scientist who directs the Center’s Balance Assessment and Training Laboratory.

Study investigators sought to quantify the threshold for perceiving perturbation in individuals with and without traumatic brain injury, and determine the influence on static and dynamic balance. They provoked body sway during standing and measured response thresholds. Lower thresholds for perceiving these perturbations indicate better body awareness to maintain balance in dynamic settings.

Participants included ten individuals with traumatic brain injury (TBI group) and 11 healthy controls (control group), all of whom underwent comprehensive baseline balance assessment (Berg Balance Scale, Timed-Up and Go, 5-min Walk Test, and 10-meter Walk Test). Using a responsive platform called the Neurocom Smart Equitest Clinical Research System, researchers delivered measured stimuli in three frequencies that briefly moved the platform in an anterior-posterior direction. Participants were asked to respond to 21 trials randomized for movement (perturbation) or no movement (nonperturbation). Each individual’s responses to these trials were recorded while standing on the platform, to establish their PPT.

Results revealed significant differences in PPT between the TBI and control groups. Compared with the control group, the TBI group had higher PPT and lower functional scores on static and dynamic balance. While further research is needed, these findings have important implications for the rehabilitation of individuals with TBI. “As a means of detecting and quantifying sensory acuity PPT may serve as a novel marker for the sensory integration deficits that underlie balance impairments in individuals recovering from traumatic brain injury,” said Dr. Pilkar. “This line of research will provide the information we need to develop new rehabilitative treatments that restore balance and reduce the risk for falls, and improve long-term outcomes after traumatic brain injury.”

###

Funding sources: New Jersey Commission on Brain Injury Research CBIR15MIG004

About Kessler Foundation

Kessler Foundation, a major nonprofit organization in the field of disability, is a global leader in rehabilitation research that seeks to improve cognition, mobility and long-term outcomes, including employment, for people with neurological disabilities caused by diseases and injuries of the brain and spinal cord. Kessler Foundation leads the nation in funding innovative programs that expand opportunities for employment for people with disabilities. For more information, visit KesslerFoundation.org.

For more information, or to interview an expert, contact: Carolann Murphy, 973.324.8382, [email protected]

Media Contact
Carolann Murphy
[email protected]

Related Journal Article

http://dx.doi.org/10.3389/fnins.2020.00836

Tags: Biomechanics/BiophysicsClinical TrialsDisabled PersonsMedicine/HealthRehabilitation/Prosthetics/Plastic SurgeryTrauma/Injury
Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Addiction-like Eating Tied to Deprivation and BMI

Mosquito Gene Response Reveals Japanese Encephalitis Entry

Lumpy Skin Disease: Efficacy of Antibacterial Treatments in Cattle

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.