• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, January 17, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Bacteria never swim alone

Bioengineer by Bioengineer
July 14, 2017
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Many animal species display flocking behaviour, but the fact that microorganisms do is not as well known. Researchers at Lund University in Sweden have now shown that algae and bacteria form flocks at very low concentrations of individuals, a finding that could increase our future understanding of how the organisms infect their host animals.

Flocking behaviour in animals seemingly arises spontaneously in a group of independent individuals without a clear leader. This behaviour occurs among all types of organisms, from bacteria to people. One hypothesis, therefore, is that there are fundamental principles for flock building that are not dependent on single individuals.

Researchers at Lund University, in cooperation with colleagues from the UK and France, have now found that flocking behaviour among microorganisms is more advanced than we previously thought.

"Our research is a physical explanatory model of how microorganisms move. From a biological perspective, it is useful to examine the evolutionary basis for flocking behaviour among bacteria, as the connections can increase our understanding of the course of infectious diseases", says Joakim Stenhammar, chemistry researcher at Lund University.

When a person or animal swims, they create backwashes or wakes that others can sense. The researchers have now created a theoretical model that describes how single microorganisms communicate with each other via the backwashes that each organism creates. The physical principle differs from ordinary backwashes, but these flows enable the bacteria to sense each other's presence and affect each other at very low concentrations. In the light of this, microorganisms cannot be described as isolated individuals.

It was previously known that certain swimming bacteria, such as E. coli and Salmonella, form flocks at high concentrations. In the new study, Stenhammar and his colleagues have shown that it is only at extremely low concentrations – less than ten per cent of what was previously thought – that bacteria can be considered as individuals.

"In contrast to an individual bacterium, flocks can move in a synchronised way over long length scales and several times faster than a single bacterium", says Joakim Stenhammar.

"Our research adds another piece of the puzzle to our understanding of how flocking behaviour works in biological systems, and the model can be applied to a large number of swimming microorganisms", says Joakim Stenhammar.

###

Contact:

Joakim Stenhammar, Associate Senior Lecturer
Department of Chemistry, Lund University
Tel. +46 (0)707 22 61 12
Email: [email protected]

Media Contact

Joakim Stenhammar
[email protected]
46-707-226-112
@lunduniversity

http://www.lu.se

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.028005

Related Journal Article

http://dx.doi.org/10.1103/PhysRevLett.119.028005

Share12Tweet8Share2ShareShareShare2

Related Posts

Sarcopenia Elevates Risk of Multiple Vertebral Fractures

January 17, 2026

Assessing Content Validity of PRO Measures in Skin Diseases

January 17, 2026

Stem Cell Gym Boosts Human Heart Cell Maturation

January 17, 2026

Addressing Mobile Addiction: A Comprehensive Review

January 17, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    155 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    147 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    77 shares
    Share 31 Tweet 19
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    54 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionary Depth-Aware Model Enhances UAV 3D Detection

Sarcopenia Elevates Risk of Multiple Vertebral Fractures

Assessing Content Validity of PRO Measures in Skin Diseases

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.