• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Australian desalination plant attracts fish

Bioengineer by Bioengineer
December 18, 2019
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Mclennans Diving


With growing populations and climate uncertainty, water security is a global concern. Many nations operate desalination plants, which remove salt from seawater to make it drinkable. These facilities typically discharge excess salt as hypersaline brine back into the ocean, with uncertain ecological effects. Now, researchers in Environmental Science & Technology report that a large desalination plant in Australia has the unexpected benefit of attracting some species of fish, increasing their abundance at the discharge site.

The city of Sydney, Australia, began operating the Sydney Desalination Plant in 2010 to improve water security for Australia’s largest city. Because of an ongoing drought, the plant is now supplementing Sydney’s water supply with up to 66 million gallons per day. During operation, the Sydney Desalination Plant releases hypersaline solution from two outlets above a rocky reef about 328 yards offshore and 26 yards below the ocean surface. Brendan Kelaher and colleagues investigated how this hypersaline discharge impacted reef fish community structure and abundance.

The researchers used scuba divers to take videos of fish at the outlet sites and at multiple reference sites a couple of miles away over a 7-year period before and after the desalination plant’s operation, as well during a timeframe when the plant temporarily ceased operations. Fish, including some commercially important species, were three times more plentiful around the outlet during hypersaline discharge than before or after. The largest increase was observed for fish, such as the one-spot puller, that feed on zooplankton. These differences were not observed at the reference sites. Because local changes in seawater salinity and temperature were relatively small following hypersaline discharge, the team says that the turbulence caused by the high-pressure release of the salty solution could have attracted the fish. Careful regulation of fishing around desalination discharge outlets might be needed to prevent local depletion of fish populations on the broader reef complex, the researchers say.

###

The authors acknowledge funding from the Sydney Water Corporation and the Sydney Desalination Plant.

The paper’s abstract will be available on December 18 at 8 a.m. Eastern time here: http://pubs.acs.org/doi/abs/10.1021/acs.est.9b03565

The American Chemical Society, the world’s largest scientific society, is a nonprofit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact [email protected].

Follow us: Twitter | Facebook

Media Contact
Katie Cottingham
[email protected]
301-775-8455

Tags: Chemistry/Physics/Materials SciencesHydrology/Water ResourcesMarine/Freshwater BiologyOceanographyPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Scientists Identify Astrocytic “Brake” That Inhibits Spinal Cord Repair

Scientists Identify Astrocytic “Brake” That Inhibits Spinal Cord Repair

September 11, 2025
Worms Uncover the True Crowded Nature of Cells

Worms Uncover the True Crowded Nature of Cells

September 11, 2025

Unraveling Gene Expression Mechanisms in Glioblastoma

September 10, 2025

Transforming Impedance Flow Cytometry Through Adjustable Microchannel Height

September 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    62 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Fluctuating DNA Methylation Maps Cancer Evolution

Ultrabroadband Carbon Nanotube Scanners Revolutionize Pharma Quality

Amino Acids Stabilize Proteins and Colloids

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.